These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
207 related articles for article (PubMed ID: 16969757)
1. PCL-PGLA composite tubular scaffold preparation and biocompatibility investigation. Mo X; Weber HJ; Ramakrishna S Int J Artif Organs; 2006 Aug; 29(8):790-9. PubMed ID: 16969757 [TBL] [Abstract][Full Text] [Related]
2. In vivo characterisation of a novel bioresorbable poly(lactide-co-glycolide) tubular foam scaffold for tissue engineering applications. Day RM; Boccaccini AR; Maquet V; Shurey S; Forbes A; Gabe SM; Jérôme R J Mater Sci Mater Med; 2004 Jun; 15(6):729-34. PubMed ID: 15346742 [TBL] [Abstract][Full Text] [Related]
3. Manufacture of porous biodegradable polymer conduits by an extrusion process for guided tissue regeneration. Widmer MS; Gupta PK; Lu L; Meszlenyi RK; Evans GR; Brandt K; Savel T; Gurlek A; Patrick CW; Mikos AG Biomaterials; 1998 Nov; 19(21):1945-55. PubMed ID: 9863528 [TBL] [Abstract][Full Text] [Related]
4. Fabrication of three-dimensional porous scaffolds of complicated shape for tissue engineering. I. Compression molding based on flexible-rigid combined mold. Wu L; Zhang H; Zhang J; Ding J Tissue Eng; 2005; 11(7-8):1105-14. PubMed ID: 16144446 [TBL] [Abstract][Full Text] [Related]
5. Decreased fibroblast cell density on chemically degraded poly-lactic-co-glycolic acid, polyurethane, and polycaprolactone. Vance RJ; Miller DC; Thapa A; Haberstroh KM; Webster TJ Biomaterials; 2004 May; 25(11):2095-103. PubMed ID: 14741624 [TBL] [Abstract][Full Text] [Related]
6. Self-Adjusting, Polymeric Multilayered Roll that can Keep the Shapes of the Blood Vessel Scaffolds during Biodegradation. Cheng S; Jin Y; Wang N; Cao F; Zhang W; Bai W; Zheng W; Jiang X Adv Mater; 2017 Jul; 29(28):. PubMed ID: 28514016 [TBL] [Abstract][Full Text] [Related]
7. Poly(alpha-hydroxyl acids)/hydroxyapatite porous composites for bone-tissue engineering. I. Preparation and morphology. Zhang R; Ma PX J Biomed Mater Res; 1999 Mar; 44(4):446-55. PubMed ID: 10397949 [TBL] [Abstract][Full Text] [Related]
8. The effect of scaffold degradation rate on three-dimensional cell growth and angiogenesis. Sung HJ; Meredith C; Johnson C; Galis ZS Biomaterials; 2004 Nov; 25(26):5735-42. PubMed ID: 15147819 [TBL] [Abstract][Full Text] [Related]
9. Preparation of cylinder-shaped porous sponges of poly(L-lactic acid), poly(DL-lactic-co-glycolic acid), and poly(ε-caprolactone). He X; Kawazoe N; Chen G Biomed Res Int; 2014; 2014():106082. PubMed ID: 24719843 [TBL] [Abstract][Full Text] [Related]
10. Fabrication and characterization of six electrospun poly(alpha-hydroxy ester)-based fibrous scaffolds for tissue engineering applications. Li WJ; Cooper JA; Mauck RL; Tuan RS Acta Biomater; 2006 Jul; 2(4):377-85. PubMed ID: 16765878 [TBL] [Abstract][Full Text] [Related]
11. Anterior cruciate ligament regeneration using braided biodegradable scaffolds: in vitro optimization studies. Lu HH; Cooper JA; Manuel S; Freeman JW; Attawia MA; Ko FK; Laurencin CT Biomaterials; 2005 Aug; 26(23):4805-16. PubMed ID: 15763260 [TBL] [Abstract][Full Text] [Related]
12. Development and characterization of a porous micro-patterned scaffold for vascular tissue engineering applications. Sarkar S; Lee GY; Wong JY; Desai TA Biomaterials; 2006 Sep; 27(27):4775-82. PubMed ID: 16725195 [TBL] [Abstract][Full Text] [Related]
13. Fiber-based tissue-engineered scaffold for ligament replacement: design considerations and in vitro evaluation. Cooper JA; Lu HH; Ko FK; Freeman JW; Laurencin CT Biomaterials; 2005 May; 26(13):1523-32. PubMed ID: 15522754 [TBL] [Abstract][Full Text] [Related]
14. Control of pore size and structure of tissue engineering scaffolds produced by supercritical fluid processing. Tai H; Mather ML; Howard D; Wang W; White LJ; Crowe JA; Morgan SP; Chandra A; Williams DJ; Howdle SM; Shakesheff KM Eur Cell Mater; 2007 Dec; 14():64-77. PubMed ID: 18085505 [TBL] [Abstract][Full Text] [Related]
15. Regeneration of a goat femoral head using a tissue-specific, biphasic scaffold fabricated with CAD/CAM technology. Ding C; Qiao Z; Jiang W; Li H; Wei J; Zhou G; Dai K Biomaterials; 2013 Sep; 34(28):6706-16. PubMed ID: 23773816 [TBL] [Abstract][Full Text] [Related]
16. Fabrication and characterization of chitosan/OGP coated porous poly(ε-caprolactone) scaffold for bone tissue engineering. Cui Z; Lin L; Si J; Luo Y; Wang Q; Lin Y; Wang X; Chen W J Biomater Sci Polym Ed; 2017 Jun; 28(9):826-845. PubMed ID: 28278041 [TBL] [Abstract][Full Text] [Related]
17. The relationship between the mechanical properties and cell behaviour on PLGA and PCL scaffolds for bladder tissue engineering. Baker SC; Rohman G; Southgate J; Cameron NR Biomaterials; 2009 Mar; 30(7):1321-8. PubMed ID: 19091399 [TBL] [Abstract][Full Text] [Related]
18. Preparation and characterization of electrospun PCL/PLGA membranes and chitosan/gelatin hydrogels for skin bioengineering applications. Franco RA; Nguyen TH; Lee BT J Mater Sci Mater Med; 2011 Oct; 22(10):2207-18. PubMed ID: 21805330 [TBL] [Abstract][Full Text] [Related]
19. Amniotic epithelial stem cell biocompatibility for electrospun poly(lactide-co-glycolide), poly(ε-caprolactone), poly(lactic acid) scaffolds. Russo V; Tammaro L; Di Marcantonio L; Sorrentino A; Ancora M; Valbonetti L; Turriani M; Martelli A; Cammà C; Barboni B Mater Sci Eng C Mater Biol Appl; 2016 Dec; 69():321-9. PubMed ID: 27612719 [TBL] [Abstract][Full Text] [Related]
20. Manufacturing and morphology structure of polylactide-type microtubules orientation-structured scaffolds. Yang F; Qu X; Cui W; Bei J; Yu F; Lu S; Wang S Biomaterials; 2006 Oct; 27(28):4923-33. PubMed ID: 16759695 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]