These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 16969782)

  • 41. Site-specific incorporation of non-natural amino acids into proteins in mammalian cells with an expanded genetic code.
    Hino N; Hayashi A; Sakamoto K; Yokoyama S
    Nat Protoc; 2006; 1(6):2957-62. PubMed ID: 17406555
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Genetic encoding of 3-iodo-L-tyrosine in Escherichia coli for single-wavelength anomalous dispersion phasing in protein crystallography.
    Sakamoto K; Murayama K; Oki K; Iraha F; Kato-Murayama M; Takahashi M; Ohtake K; Kobayashi T; Kuramitsu S; Shirouzu M; Yokoyama S
    Structure; 2009 Mar; 17(3):335-44. PubMed ID: 19278648
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Site-specific incorporation of unnatural amino acids into urate oxidase in Escherichia coli.
    Chen M; Cai L; Fang Z; Tian H; Gao X; Yao W
    Protein Sci; 2008 Oct; 17(10):1827-33. PubMed ID: 18596202
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Efficient incorporation of a nonnatural amino acid into a protein in an insect cell-free translation system.
    Tokuda Y; Taki M; Sisido M
    Nucleic Acids Symp Ser (Oxf); 2006; (50):277-8. PubMed ID: 17150925
    [TBL] [Abstract][Full Text] [Related]  

  • 45. A promiscuous aminoacyl-tRNA synthetase that incorporates cysteine, methionine, and alanine homologs into proteins.
    Brustad E; Bushey ML; Brock A; Chittuluru J; Schultz PG
    Bioorg Med Chem Lett; 2008 Nov; 18(22):6004-6. PubMed ID: 18845434
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Using E. coli-based cell-free protein synthesis to evaluate the kinetic performance of an orthogonal tRNA and aminoacyl-tRNA synthetase pair.
    Albayrak C; Swartz JR
    Biochem Biophys Res Commun; 2013 Feb; 431(2):291-5. PubMed ID: 23291171
    [TBL] [Abstract][Full Text] [Related]  

  • 47. The NEXT-A (N-terminal EXtension with Transferase and ARS) reaction.
    Taki M; Kuroiwa H; Sisido M
    Nucleic Acids Symp Ser (Oxf); 2009; (53):37-8. PubMed ID: 19749248
    [TBL] [Abstract][Full Text] [Related]  

  • 48. The genetic incorporation of a distance probe into proteins in Escherichia coli.
    Tsao ML; Summerer D; Ryu Y; Schultz PG
    J Am Chem Soc; 2006 Apr; 128(14):4572-3. PubMed ID: 16594684
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Breaking the degeneracy of the genetic code.
    Kwon I; Kirshenbaum K; Tirrell DA
    J Am Chem Soc; 2003 Jun; 125(25):7512-3. PubMed ID: 12812480
    [TBL] [Abstract][Full Text] [Related]  

  • 50. The site-specific incorporation of p-iodo-L-phenylalanine into proteins for structure determination.
    Xie J; Wang L; Wu N; Brock A; Spraggon G; Schultz PG
    Nat Biotechnol; 2004 Oct; 22(10):1297-301. PubMed ID: 15378068
    [TBL] [Abstract][Full Text] [Related]  

  • 51. The phenylalanine tRNA from Mycoplasma sp. (Kid): a tRNA lacking hypermodified nucleosides functional in protein synthesis.
    Kimball ME; Soll D
    Nucleic Acids Res; 1974 Dec; 1(12):1713-20. PubMed ID: 4615304
    [TBL] [Abstract][Full Text] [Related]  

  • 52. In situ generation of aminoacyl-tRNAs assisted by ribozymes in translation apparatus.
    Ohuchi M; Murakami H; Suga H
    Nucleic Acids Symp Ser (Oxf); 2007; (51):115-6. PubMed ID: 18029613
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Four-base codon-mediated saturation mutagenesis in a cell-free translation system.
    Watanabe T; Muranaka N; Hohsaka T
    J Biosci Bioeng; 2008 Mar; 105(3):211-5. PubMed ID: 18397770
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Phenylalanine utilization for protein synthesis in beta-phenylpyruvic acid treated Escherichia coli cells.
    Miseta A; Csutora P; Sipos K; Wheatley DN
    Microbios; 1996; 87(351):123-33. PubMed ID: 9032961
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Simultaneous and site-directed incorporation of an ester linkage and an azide group into a polypeptide by in vitro translation.
    Humenik M; Huang Y; Safronov I; Sprinzl M
    Org Biomol Chem; 2009 Oct; 7(20):4218-24. PubMed ID: 19795060
    [TBL] [Abstract][Full Text] [Related]  

  • 56. The genetic incorporation of p-azidomethyl-l-phenylalanine into proteins in yeast.
    Supekova L; Zambaldo C; Choi S; Lim R; Luo X; Kazane SA; Young TS; Schultz PG
    Bioorg Med Chem Lett; 2018 May; 28(9):1570-1573. PubMed ID: 29625824
    [TBL] [Abstract][Full Text] [Related]  

  • 57. A simple approach to sense codon-templated synthesis of natural/unnatural hybrid peptides.
    Kanatani K; Sando S; Aoyama Y
    Nucleic Acids Symp Ser (Oxf); 2005; (49):265-6. PubMed ID: 17150735
    [TBL] [Abstract][Full Text] [Related]  

  • 58. [Development and application of technologies for site-specific incorporation of non-natural amino acids into proteins].
    Sakamoto K; Yokoyama S
    Tanpakushitsu Kakusan Koso; 2009 Sep; 54(12 Suppl):1454-60. PubMed ID: 21089570
    [No Abstract]   [Full Text] [Related]  

  • 59. Fluorescent labeling of cell-free synthesized proteins by incorporation of fluorophore-conjugated nonnatural amino acids.
    Kang SH; Jun SY; Kim DM
    Anal Biochem; 2007 Jan; 360(1):1-6. PubMed ID: 17113028
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Expanding the genetic repertoire of the methylotrophic yeast Pichia pastoris.
    Young TS; Ahmad I; Brock A; Schultz PG
    Biochemistry; 2009 Mar; 48(12):2643-53. PubMed ID: 19265424
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.