These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 1696981)

  • 1. Evidence for two calcium-dependent potassium conductances in lizard motor nerve terminals.
    Morita K; Barrett EF
    J Neurosci; 1990 Aug; 10(8):2614-25. PubMed ID: 1696981
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Calcium-dependent depolarizations originating in lizard motor nerve terminals.
    Morita K; Barrett EF
    J Neurosci; 1989 Sep; 9(9):3359-69. PubMed ID: 2677261
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ionic basis of the action potential of guinea pig gallbladder smooth muscle cells.
    Zhang L; Bonev AD; Nelson MT; Mawe GM
    Am J Physiol; 1993 Dec; 265(6 Pt 1):C1552-61. PubMed ID: 7506489
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Action potential repolarization and a fast after-hyperpolarization in rat hippocampal pyramidal cells.
    Storm JF
    J Physiol; 1987 Apr; 385():733-59. PubMed ID: 2443676
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Activation of a slow outward current by the calcium released during contraction of cultured rat skeletal muscle cells.
    Constantin B; Cognard C; Rivet-Bastide M; Raymond G
    Pflugers Arch; 1993 May; 423(3-4):291-9. PubMed ID: 7686646
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Properties of two calcium-activated hyperpolarizations in rat hippocampal neurones.
    Lancaster B; Nicoll RA
    J Physiol; 1987 Aug; 389():187-203. PubMed ID: 2445972
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pharmacological modulation of electromechanical coupling in the proximal and distal regions of the guinea-pig renal pelvis.
    Santicioli P; Maggi CA
    J Auton Pharmacol; 1997 Feb; 17(1):43-52. PubMed ID: 9201559
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multiple potassium conductances and their role in action potential repolarization and repetitive firing behavior of neonatal rat hypoglossal motoneurons.
    Viana F; Bayliss DA; Berger AJ
    J Neurophysiol; 1993 Jun; 69(6):2150-63. PubMed ID: 8350136
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Different mechanisms underlying the repolarization of narrow and wide action potentials in pyramidal cells and interneurons of cat motor cortex.
    Chen W; Zhang JJ; Hu GY; Wu CP
    Neuroscience; 1996 Jul; 73(1):57-68. PubMed ID: 8783229
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of tetraethylammonium on the depolarizing after-potential and passive properties of lizard myelinated axons.
    Barrett EF; Morita K; Scappaticci KA
    J Physiol; 1988 Aug; 402():65-78. PubMed ID: 2853225
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Posttetanic hyperpolarization produced by electrogenic Na(+)-K+ pump in lizard axons impaled near their motor terminals.
    Morita K; David G; Barrett JN; Barrett EF
    J Neurophysiol; 1993 Nov; 70(5):1874-84. PubMed ID: 8294960
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ionic currents in single smooth muscle cells of the canine renal artery.
    Gelband CH; Hume JR
    Circ Res; 1992 Oct; 71(4):745-58. PubMed ID: 1381293
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A novel large-conductance Ca(2+)-activated potassium channel and current in nerve terminals of the rat neurohypophysis.
    Wang G; Thorn P; Lemos JR
    J Physiol; 1992 Nov; 457():47-74. PubMed ID: 1284313
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ionic mechanisms of intrinsic oscillations in neurons of the basolateral amygdaloid complex.
    Pape HC; Driesang RB
    J Neurophysiol; 1998 Jan; 79(1):217-26. PubMed ID: 9425193
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Potassium currents contributing to action potential repolarization and the afterhyperpolarization in rat vagal motoneurons.
    Sah P; McLachlan EM
    J Neurophysiol; 1992 Nov; 68(5):1834-41. PubMed ID: 1336045
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tetraethylammonium blockade of apamin-sensitive and insensitive Ca2(+)-activated K+ channels in a pituitary cell line.
    Lang DG; Ritchie AK
    J Physiol; 1990 Jun; 425():117-32. PubMed ID: 1698974
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Calcium-dependent potassium currents in neurons from cat sensorimotor cortex.
    Schwindt PC; Spain WJ; Crill WE
    J Neurophysiol; 1992 Jan; 67(1):216-26. PubMed ID: 1313080
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Calcium-mediated agonists activate an inwardly rectified K+ channel in colonic secretory cells.
    Devor DC; Frizzell RA
    Am J Physiol; 1993 Nov; 265(5 Pt 1):C1271-80. PubMed ID: 7694492
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modulation of K+ and Ca2+ channels by histamine H1-receptor stimulation in rabbit coronary artery cells.
    Ishikawa T; Hume JR; Keef KD
    J Physiol; 1993 Aug; 468():379-400. PubMed ID: 7504729
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Role of Ca(2+)-activated K+ channels in electrical activity of longitudinal and circular muscle layers of canine colon.
    Carl A; Bayguinov O; Shuttleworth CW; Ward SM; Sanders KM
    Am J Physiol; 1995 Mar; 268(3 Pt 1):C619-27. PubMed ID: 7534981
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.