These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
23. Identification of ionic currents at presynaptic nerve endings of the lizard. Lindgren CA; Moore JW J Physiol; 1989 Jul; 414():201-22. PubMed ID: 2575161 [TBL] [Abstract][Full Text] [Related]
24. Effect of lowered extracellular pH on Ca2(+)-dependent K+ currents in type I cells from the neonatal rat carotid body. Peers C J Physiol; 1990 Mar; 422():381-95. PubMed ID: 1693683 [TBL] [Abstract][Full Text] [Related]
25. Potassium conductances underlying repolarization and after-hyperpolarization in rat CA1 hippocampal interneurones. Zhang L; McBain CJ J Physiol; 1995 Nov; 488 ( Pt 3)(Pt 3):661-72. PubMed ID: 8576856 [TBL] [Abstract][Full Text] [Related]
26. Effects of intracellular stores and extracellular Ca(2+) on Ca(2+)-activated K(+) currents in mature mouse inner hair cells. Marcotti W; Johnson SL; Kros CJ J Physiol; 2004 Jun; 557(Pt 2):613-33. PubMed ID: 15064328 [TBL] [Abstract][Full Text] [Related]
27. Functional role of charybdotoxin-sensitive K+ channels in the resting state of cerebral, coronary and mesenteric arteries of the dog. Asano M; Masuzawa-Ito K; Matsuda T; Suzuki Y; Oyama H; Shibuya M; Sugita K J Pharmacol Exp Ther; 1993 Dec; 267(3):1277-85. PubMed ID: 7505329 [TBL] [Abstract][Full Text] [Related]
28. Resting membrane potential and potassium currents in cultured parasympathetic neurones from rat intracardiac ganglia. Xu ZJ; Adams DJ J Physiol; 1992 Oct; 456():405-24. PubMed ID: 1284080 [TBL] [Abstract][Full Text] [Related]
29. Prejunctional actions of K+ channel blockers in rat vas deferens. Docherty JR; Brady G Eur J Pharmacol; 1995 Dec; 287(3):287-93. PubMed ID: 8991803 [TBL] [Abstract][Full Text] [Related]
30. A calcium-activated potassium channel causes frequency-dependent action-potential failures in a mammalian nerve terminal. Bielefeldt K; Jackson MB J Neurophysiol; 1993 Jul; 70(1):284-98. PubMed ID: 8395581 [TBL] [Abstract][Full Text] [Related]
31. Endothelin activates large-conductance K+ channels in rat lactotrophs: reversal by long-term exposure to dopamine agonist. Kanyicska B; Freeman ME; Dryer SE Endocrinology; 1997 Aug; 138(8):3141-53. PubMed ID: 9231761 [TBL] [Abstract][Full Text] [Related]
32. Voltage-gated potassium channels activated during action potentials in layer V neocortical pyramidal neurons. Kang J; Huguenard JR; Prince DA J Neurophysiol; 2000 Jan; 83(1):70-80. PubMed ID: 10634854 [TBL] [Abstract][Full Text] [Related]
33. Ionic conductances contributing to spike repolarization and after-potentials in rat medial vestibular nucleus neurones. Johnston AR; MacLeod NK; Dutia MB J Physiol; 1994 Nov; 481 ( Pt 1)(Pt 1):61-77. PubMed ID: 7531769 [TBL] [Abstract][Full Text] [Related]
34. Ca(2+)-activated and voltage-gated K+ currents in smooth muscle cells isolated from human mesenteric arteries. Smirnov SV; Aaronson PI J Physiol; 1992 Nov; 457():431-54. PubMed ID: 1284312 [TBL] [Abstract][Full Text] [Related]
35. Charybdotoxin and apamin sensitivity of the calcium-dependent repolarization and the afterhyperpolarization in neostriatal neurons. Pineda JC; Galarraga E; Bargas J; Cristancho M; Aceves J J Neurophysiol; 1992 Jul; 68(1):287-94. PubMed ID: 1381420 [TBL] [Abstract][Full Text] [Related]
36. Nifedipine- and omega-conotoxin-sensitive Ca2+ conductances in guinea-pig substantia nigra pars compacta neurones. Nedergaard S; Flatman JA; Engberg I J Physiol; 1993 Jul; 466():727-47. PubMed ID: 8410714 [TBL] [Abstract][Full Text] [Related]
38. Evidence that action potentials activate an internodal potassium conductance in lizard myelinated axons. David G; Barrett JN; Barrett EF J Physiol; 1992 Jan; 445():277-301. PubMed ID: 1501136 [TBL] [Abstract][Full Text] [Related]
39. Role of K+ channels in spontaneous electrical and mechanical activity of smooth muscle in the guinea-pig mesotubarium. Lydrup ML J Physiol; 1991 Feb; 433():327-40. PubMed ID: 1841943 [TBL] [Abstract][Full Text] [Related]