BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 16969889)

  • 1. Contact-active antimicrobial coatings derived from aqueous suspensions.
    Fuchs AD; Tiller JC
    Angew Chem Int Ed Engl; 2006 Oct; 45(40):6759-62. PubMed ID: 16969889
    [No Abstract]   [Full Text] [Related]  

  • 2. Mechanistic considerations on contact-active antimicrobial surfaces with controlled functional group densities.
    Bieser AM; Tiller JC
    Macromol Biosci; 2011 Apr; 11(4):526-34. PubMed ID: 21229579
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electroenhanced Antimicrobial Coating Based on Conjugated Polymers with Covalently Coupled Silver Nanoparticles Prevents Staphylococcus aureus Biofilm Formation.
    Gomez-Carretero S; Nybom R; Richter-Dahlfors A
    Adv Healthc Mater; 2017 Oct; 6(20):. PubMed ID: 28805046
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Grafted α-hydroxyphosphonic acids onto polymeric supports: preparation, characterization, and antimicrobial effect.
    Nichita I; Popa A; Dragan ES; Iliescu S; Ilia G
    J Biomater Sci Polym Ed; 2015; 26(8):483-96. PubMed ID: 25789417
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Simultaneously Antimicrobial, Protein-Repellent, and Cell-Compatible Polyzwitterion Network.
    Kurowska M; Eickenscheidt A; Guevara-Solarte DL; Widyaya VT; Marx F; Al-Ahmad A; Lienkamp K
    Biomacromolecules; 2017 Apr; 18(4):1373-1386. PubMed ID: 28269987
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Anti-biofilm properties of chitosan-coated surfaces.
    Carlson RP; Taffs R; Davison WM; Stewart PS
    J Biomater Sci Polym Ed; 2008; 19(8):1035-46. PubMed ID: 18644229
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Combating bacterial colonization on metals via polymer coatings: relevance to marine and medical applications.
    Neoh KG; Kang ET
    ACS Appl Mater Interfaces; 2011 Aug; 3(8):2808-19. PubMed ID: 21732600
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Initiated chemical vapor deposition of antimicrobial polymer coatings.
    Martin TP; Kooi SE; Chang SH; Sedransk KL; Gleason KK
    Biomaterials; 2007 Feb; 28(6):909-15. PubMed ID: 17095086
    [TBL] [Abstract][Full Text] [Related]  

  • 9. N-halamine/quat siloxane copolymers for use in biocidal coatings.
    Liang J; Chen Y; Barnes K; Wu R; Worley SD; Huang TS
    Biomaterials; 2006 Apr; 27(11):2495-501. PubMed ID: 16352336
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dynamic Antimicrobial Poly(disulfide) Coatings Exfoliate Biofilms On Demand Via Triggered Depolymerization.
    Lou Y; Palermo EF
    Adv Healthc Mater; 2024 Apr; 13(11):e2303359. PubMed ID: 38288658
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A one-step process for the antimicrobial finishing of textiles with crystalline TiO2 nanoparticles.
    Perelshtein I; Applerot G; Perkas N; Grinblat J; Gedanken A
    Chemistry; 2012 Apr; 18(15):4575-82. PubMed ID: 22407609
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bacterial behaviors on polymer surfaces with organic and inorganic antimicrobial compounds.
    Ji J; Zhang W
    J Biomed Mater Res A; 2009 Feb; 88(2):448-53. PubMed ID: 18306288
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Star-shaped poly(styrene)-block-poly(4-vinyl-N-methylpyridiniumiodide) for semipermanent antimicrobial coatings.
    Siedenbiedel F; Fuchs A; Moll T; Weide M; Breves R; Tiller JC
    Macromol Biosci; 2013 Oct; 13(10):1447-55. PubMed ID: 23897664
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The relationship between the antimicrobial effect of catheter coatings containing silver nanoparticles and the coagulation of contacting blood.
    Stevens KN; Crespo-Biel O; van den Bosch EE; Dias AA; Knetsch ML; Aldenhoff YB; van der Veen FH; Maessen JG; Stobberingh EE; Koole LH
    Biomaterials; 2009 Aug; 30(22):3682-90. PubMed ID: 19394689
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nanostructure, dissolution and morphology characteristics of microcidal silver films deposited by magnetron sputtering.
    Sant SB; Gill KS; Burrell RE
    Acta Biomater; 2007 May; 3(3):341-50. PubMed ID: 17234464
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development of antimicrobial coatings by atmospheric pressure plasma using a guanidine-based precursor.
    Yim JH; Fleischman MS; Rodriguez-Santiago V; Piehler LT; Williams AA; Leadore JL; Pappas DD
    ACS Appl Mater Interfaces; 2013 Nov; 5(22):11836-43. PubMed ID: 24164174
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Antimicrobial activity of core-sheath surgical sutures modified with poly-3-hydroxybutyrate].
    Fedorov MB; Vikhoreva GA; Kil'deeva NR; Mokhova ON; Bonartseva GA; Gal'braĭkh LS
    Prikl Biokhim Mikrobiol; 2007; 43(6):685-90. PubMed ID: 18173111
    [TBL] [Abstract][Full Text] [Related]  

  • 18. New anti-infective coatings of surgical sutures based on a combination of antiseptics and fatty acids.
    Matl FD; Zlotnyk J; Obermeier A; Friess W; Vogt S; Büchner H; Schnabelrauch H; Stemberger A; Kühn KD
    J Biomater Sci Polym Ed; 2009; 20(10):1439-49. PubMed ID: 19622281
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Functionalised hybrid materials of conducting polymers with individual wool fibers.
    Kelly FM; Johnston JH; Borrmann T; Richardson MJ
    J Nanosci Nanotechnol; 2008 Apr; 8(4):1965-72. PubMed ID: 18572600
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Decorating parylene-coated glass with ZnO nanoparticles for antibacterial applications: a comparative study of sonochemical, microwave, and microwave-plasma coating routes.
    Applerot G; Abu-Mukh R; Irzh A; Charmet J; Keppner H; Laux E; Guibert G; Gedanken A
    ACS Appl Mater Interfaces; 2010 Apr; 2(4):1052-9. PubMed ID: 20359239
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.