BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

234 related articles for article (PubMed ID: 16970398)

  • 21. 5-pyrrolidinylsulfonyl isatins as a potential tool for the molecular imaging of caspases in apoptosis.
    Kopka K; Faust A; Keul P; Wagner S; Breyholz HJ; Höltke C; Schober O; Schäfers M; Levkau B
    J Med Chem; 2006 Nov; 49(23):6704-15. PubMed ID: 17154501
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Design, synthesis, and
    Corrigan TS; Lotti Diaz LM; Border SE; Ratigan SC; Kasper KQ; Sojka D; Fajtova P; Caffrey CR; Salvesen GS; McElroy CA; Hadad CM; Doğan Ekici Ö
    J Enzyme Inhib Med Chem; 2020 Dec; 35(1):1387-1402. PubMed ID: 32633155
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Plasticity of S2-S4 specificity pockets of executioner caspase-7 revealed by structural and kinetic analysis.
    Agniswamy J; Fang B; Weber IT
    FEBS J; 2007 Sep; 274(18):4752-65. PubMed ID: 17697120
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Some commonly used caspase substrates and inhibitors lack the specificity required to monitor individual caspase activity.
    Pereira NA; Song Z
    Biochem Biophys Res Commun; 2008 Dec; 377(3):873-7. PubMed ID: 18976637
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Dipeptidyl aspartyl fluoromethylketones as potent caspase inhibitors: SAR of the N-protecting group.
    Cai SX; Guan L; Jia S; Wang Y; Yang W; Tseng B; Drewe J
    Bioorg Med Chem Lett; 2004 Nov; 14(21):5295-300. PubMed ID: 15454214
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Extended substrate recognition in caspase-3 revealed by high resolution X-ray structure analysis.
    Ganesan R; Mittl PR; Jelakovic S; Grütter MG
    J Mol Biol; 2006 Jun; 359(5):1378-88. PubMed ID: 16787777
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Azapeptides structurally based upon inhibitory sites of cystatins as potent and selective inhibitors of cysteine proteases.
    Wieczerzak E; Drabik P; Łankiewicz L; Ołdziej S; Grzonka Z; Abrahamson M; Grubb A; Brömme D
    J Med Chem; 2002 Sep; 45(19):4202-11. PubMed ID: 12213061
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Novel aza peptide inhibitors and active-site probes of papain-family cysteine proteases.
    Verhelst SH; Witte MD; Arastu-Kapur S; Fonovic M; Bogyo M
    Chembiochem; 2006 Jun; 7(6):943-50. PubMed ID: 16607671
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A novel method for evaluation and screening of caspase inhibitory peptides by the amino acid positional fitness score.
    Yoshimori A; Takasawa R; Tanuma S
    BMC Pharmacol; 2004 May; 4():7. PubMed ID: 15154972
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Synthesis and properties of the first all-aza analogue of a biologically active peptide.
    Gante J; Krug M; Lauterbach G; Weitzel R; Hiller W
    J Pept Sci; 1995; 1(3):201-6. PubMed ID: 9222997
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Peptide ketobenzoxazole inhibitors bound to cathepsin K.
    McGrath ME; Sprengeler PA; Hill CM; Martichonok V; Cheung H; Somoza JR; Palmer JT; Janc JW
    Biochemistry; 2003 Dec; 42(51):15018-28. PubMed ID: 14690410
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Structure-guided design of substituted aza-benzimidazoles as potent hypoxia inducible factor-1alpha prolyl hydroxylase-2 inhibitors.
    Frohn M; Viswanadhan V; Pickrell AJ; Golden JE; Muller KM; Bürli RW; Biddlecome G; Yoder SC; Rogers N; Dao JH; Hungate R; Allen JR
    Bioorg Med Chem Lett; 2008 Sep; 18(18):5023-6. PubMed ID: 18755588
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Isatin sulfonamide analogs containing a Michael addition acceptor: a new class of caspase 3/7 inhibitors.
    Chu W; Rothfuss J; d'Avignon A; Zeng C; Zhou D; Hotchkiss RS; Mach RH
    J Med Chem; 2007 Jul; 50(15):3751-5. PubMed ID: 17585855
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Dipeptidyl aspartyl fluoromethylketones as potent caspase-3 inhibitors: SAR of the P2 amino acid.
    Wang Y; Huang JC; Zhou ZL; Yang W; Guastella J; Drewe J; Cai SX
    Bioorg Med Chem Lett; 2004 Mar; 14(5):1269-72. PubMed ID: 14980679
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Synthesis and evaluation of novel dipeptidyl benzoyloxymethyl ketones as caspase inhibitors.
    Nedev HN; Klaiman G; LeBlanc A; Saragovi HU
    Biochem Biophys Res Commun; 2005 Oct; 336(2):397-400. PubMed ID: 16137654
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Design, synthesis, and biological evaluation of isoquinoline-1,3,4-trione derivatives as potent caspase-3 inhibitors.
    Chen YH; Zhang YH; Zhang HJ; Liu DZ; Gu M; Li JY; Wu F; Zhu XZ; Li J; Nan FJ
    J Med Chem; 2006 Mar; 49(5):1613-23. PubMed ID: 16509578
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Structure-based discovery of a novel non-peptidic small molecular inhibitor of caspase-3.
    Sakai J; Yoshimori A; Nose Y; Mizoroki A; Okita N; Takasawa R; Tanuma S
    Bioorg Med Chem; 2008 May; 16(9):4854-9. PubMed ID: 18387304
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Aza-stilbenes as potent and selective c-RAF inhibitors.
    McDonald O; Lackey K; Davis-Ward R; Wood E; Samano V; Maloney P; Deanda F; Hunter R
    Bioorg Med Chem Lett; 2006 Oct; 16(20):5378-83. PubMed ID: 16890436
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Synthesis and in vitro evaluation of sulfonamide isatin Michael acceptors as small molecule inhibitors of caspase-6.
    Chu W; Rothfuss J; Chu Y; Zhou D; Mach RH
    J Med Chem; 2009 Apr; 52(8):2188-91. PubMed ID: 19326941
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Structural optimization of azadipeptide nitriles strongly increases association rates and allows the development of selective cathepsin inhibitors.
    Frizler M; Lohr F; Furtmann N; Kläs J; Gütschow M
    J Med Chem; 2011 Jan; 54(1):396-400. PubMed ID: 21128614
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.