These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

71 related articles for article (PubMed ID: 169704)

  • 1. Estimation of cyclic AMP turnover in normal and methylprednisolone-treated dogs: effect of catecholamines.
    Issekutz TB
    Am J Physiol; 1975 Aug; 229(2):291-7. PubMed ID: 169704
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of catecholamines and dibutyryl-cyclic-AMP on glucose turnover, plasma free fatty acids, and insulin in dogs treated with methylprednisolone.
    Issekutz B; Borkow I
    Can J Physiol Pharmacol; 1972 Oct; 50(10):999-1006. PubMed ID: 4344356
    [No Abstract]   [Full Text] [Related]  

  • 3. Glucose turnover in the exercising dog with chemically induced diabetes and the effect of methylprednisolone.
    Issekutz B; Shaw WA
    Diabetes; 1975 Oct; 24(10):915-21. PubMed ID: 126184
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of catecholamines and methylprednisolone on carbohydrate metabolism of dogs.
    Issekutz B; Allen M
    Metabolism; 1972 Jan; 21(1):48-59. PubMed ID: 4332579
    [No Abstract]   [Full Text] [Related]  

  • 5. Studies on hepatic glucose cycles in normal and methylprednisolone-treated dogs.
    Issekutz B
    Metabolism; 1977 Feb; 26(2):157-70. PubMed ID: 834149
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of glucose infusion on hepatic and muscle glycogenolysis in exercising dogs.
    Issekutz B
    Am J Physiol; 1981 May; 240(5):E451-7. PubMed ID: 6263101
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Liver glycogenolysis during exercise without a significant increase in cAMP.
    Winder WW; Boullier J; Fell RD
    Am J Physiol; 1979 Sep; 237(3):R147-52. PubMed ID: 224717
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Vascular and metabolic effects of circulating epinephrine and norepinephrine. Concentration-effect study in dogs.
    Hjemdahl P; Belfrage E; Daleskog M
    J Clin Invest; 1979 Nov; 64(5):1221-8. PubMed ID: 227927
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Epinephrine, cyclic AMP, calcium, and myocardial contractility.
    Williamson JR; Schaffer S
    Recent Adv Stud Cardiac Struct Metab; 1976; 9():205-23. PubMed ID: 176696
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Interaction of glucagon and epinephrine in the regulation of adenosine 3',5'-monophosphate-dependent glycogenolysis in the cultured fetal hepatocyte.
    Moncany ML; Plas C
    Endocrinology; 1980 Dec; 107(6):1667-75. PubMed ID: 6253273
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Altered adenosine 3',5'-monophosphate release in response to parathyroid hormone by isolated perfused bone from glucocorticoid-treated dogs.
    Korkor A; Martin KJ; Olgaard K; Bergfeld M; Teitelbaum S; Klahr S; Slatopolsky E
    Endocrinology; 1983 Aug; 113(2):625-31. PubMed ID: 6191963
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Interaction between adrenaline and epidermal growth factor in the control of liver glycogenolysis in mouse.
    Grau M; Soley M; Ramírez I
    Endocrinology; 1997 Jun; 138(6):2601-9. PubMed ID: 9165054
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Regulation of glucose turnover during exercise in pancreatectomized, totally insulin-deficient dogs. Effects of beta-adrenergic blockade.
    Bjorkman O; Miles P; Wasserman D; Lickley L; Vranic M
    J Clin Invest; 1988 Jun; 81(6):1759-67. PubMed ID: 3290252
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Role of cyclic AMP in the actions of catecholamines on hepatic carbohydrate metabolism.
    Exton JH; Harper SC
    Adv Cyclic Nucleotide Res; 1975; 5():519-32. PubMed ID: 165683
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Gluconeogenesis from glycerol at rest and during exercise in normal, diabetic, and methylprednisolone-treated dogs.
    Shaw WA; Issekutz TB; Issekutz B
    Metabolism; 1976 Mar; 25(3):329-39. PubMed ID: 1250166
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pivotal role of cAMP in the activation of liver glycogen breakdown in high-fat diet fed mice.
    Schiavon FP; Marques Ade C; Carrara MA; de Souza HM; Schamber CR; Curi R; Bazotte RB
    Life Sci; 2014 Jul; 109(2):111-5. PubMed ID: 24968301
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of prostaglandins on hepatic cyclic nucleotide concentration, carbohydrate and lipid metabolism.
    Levine RA
    Yale J Biol Med; 1979; 52(1):107-16. PubMed ID: 222076
    [TBL] [Abstract][Full Text] [Related]  

  • 18. cAMP and extrarenal vasopressin V2 receptors in dogs.
    Liard JF
    Am J Physiol; 1992 Dec; 263(6 Pt 2):H1888-91. PubMed ID: 1336316
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Indomethacin and salicylate decrease epinephrine-induced glycogenolysis.
    Miller JD; Ganguli S; Artal R; Sperling MA
    Metabolism; 1985 Feb; 34(2):148-53. PubMed ID: 3881647
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Progressive weakening of the response of key enzymes of liver glycogen metabolism to permanently increased plasma epinephrine levels.
    Németh S; Viskupic E; Kvetnanský R; Kolena J
    Physiol Bohemoslov; 1987; 36(5):441-6. PubMed ID: 2827201
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.