BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 16970546)

  • 1. Interactions between substrates and the haem-bound nitric oxide of ferric and ferrous bacterial nitric oxide synthases.
    Chartier FJ; Couture M
    Biochem J; 2007 Jan; 401(1):235-45. PubMed ID: 16970546
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nitrosyl-heme structures of Bacillus subtilis nitric oxide synthase have implications for understanding substrate oxidation.
    Pant K; Crane BR
    Biochemistry; 2006 Feb; 45(8):2537-44. PubMed ID: 16489746
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Resonance Raman study of Bacillus subtilis NO synthase-like protein: similarities and differences with mammalian NO synthases.
    Santolini J; Roman M; Stuehr DJ; Mattioli TA
    Biochemistry; 2006 Feb; 45(5):1480-9. PubMed ID: 16445290
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A conserved Val to Ile switch near the heme pocket of animal and bacterial nitric-oxide synthases helps determine their distinct catalytic profiles.
    Wang ZQ; Wei CC; Sharma M; Pant K; Crane BR; Stuehr DJ
    J Biol Chem; 2004 Apr; 279(18):19018-25. PubMed ID: 14976216
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Substrate-specific interactions with the heme-bound oxygen molecule of nitric-oxide synthase.
    Chartier FJ; Couture M
    J Biol Chem; 2007 Jul; 282(29):20877-86. PubMed ID: 17537725
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Direct evidence for nitric oxide production by a nitric-oxide synthase-like protein from Bacillus subtilis.
    Adak S; Aulak KS; Stuehr DJ
    J Biol Chem; 2002 May; 277(18):16167-71. PubMed ID: 11856757
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spectroscopic, catalytic and binding properties of Bacillus subtilis NO synthase-like protein: comparison with other bacterial and mammalian NO synthases.
    Salard-Arnaud I; Stuehr D; Boucher JL; Mansuy D
    J Inorg Biochem; 2012 Jan; 106(1):164-71. PubMed ID: 22119809
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Substrate-ligand interactions in Geobacillus stearothermophilus nitric oxide synthase.
    Kabir M; Sudhamsu J; Crane BR; Yeh SR; Rousseau DL
    Biochemistry; 2008 Nov; 47(47):12389-97. PubMed ID: 18956884
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The ferrous dioxygen complex of the oxygenase domain of neuronal nitric-oxide synthase.
    Couture M; Stuehr DJ; Rousseau DL
    J Biol Chem; 2000 Feb; 275(5):3201-5. PubMed ID: 10652305
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Redox function of tetrahydrobiopterin and effect of L-arginine on oxygen binding in endothelial nitric oxide synthase.
    Berka V; Yeh HC; Gao D; Kiran F; Tsai AL
    Biochemistry; 2004 Oct; 43(41):13137-48. PubMed ID: 15476407
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Thermodynamic and kinetic analysis of the nitrosyl, carbonyl, and dioxy heme complexes of neuronal nitric-oxide synthase. The roles of substrate and tetrahydrobiopterin in oxygen activation.
    Ost TW; Daff S
    J Biol Chem; 2005 Jan; 280(2):965-73. PubMed ID: 15507439
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structure and reactivity of a thermostable prokaryotic nitric-oxide synthase that forms a long-lived oxy-heme complex.
    Sudhamsu J; Crane BR
    J Biol Chem; 2006 Apr; 281(14):9623-32. PubMed ID: 16407211
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Revisiting the Val/Ile Mutation in Mammalian and Bacterial Nitric Oxide Synthases: A Spectroscopic and Kinetic Study.
    Weisslocker-Schaetzel M; Lembrouk M; Santolini J; Dorlet P
    Biochemistry; 2017 Feb; 56(5):748-756. PubMed ID: 28074650
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Formation of nitric oxide synthase-iron(II) nitrosoalkane complexes: severe restriction of access to the iron(II) site in the presence of tetrahydrobiopterin.
    Renodon A; Boucher JL; Wu C; Gachhui R; Sari MA; Mansuy D; Stuehr D
    Biochemistry; 1998 May; 37(18):6367-74. PubMed ID: 9572852
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A weak Fe-O bond in the oxygenated complex of the nitric-oxide synthase of Staphylococcus aureus.
    Chartier FJ; Blais SP; Couture M
    J Biol Chem; 2006 Apr; 281(15):9953-62. PubMed ID: 16473878
    [TBL] [Abstract][Full Text] [Related]  

  • 16. EPR and ENDOR characterization of the reactive intermediates in the generation of NO by cryoreduced oxy-nitric oxide synthase from Geobacillus stearothermophilus.
    Davydov R; Sudhamsu J; Lees NS; Crane BR; Hoffman BM
    J Am Chem Soc; 2009 Oct; 131(40):14493-507. PubMed ID: 19754116
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Influence of heme-thiolate in shaping the catalytic properties of a bacterial nitric-oxide synthase.
    Hannibal L; Somasundaram R; Tejero J; Wilson A; Stuehr DJ
    J Biol Chem; 2011 Nov; 286(45):39224-35. PubMed ID: 21921039
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Substrate specificity of NO synthases: detailed comparison of L-arginine, homo-L-arginine, their N omega-hydroxy derivatives, and N omega-hydroxynor-L-arginine.
    Moali C; Boucher JL; Sari MA; Stuehr DJ; Mansuy D
    Biochemistry; 1998 Jul; 37(29):10453-60. PubMed ID: 9671515
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Heme coordination and structure of the catalytic site in nitric oxide synthase.
    Wang J; Stuehr DJ; Ikeda-Saito M; Rousseau DL
    J Biol Chem; 1993 Oct; 268(30):22255-8. PubMed ID: 7693663
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A tryptophan that modulates tetrahydrobiopterin-dependent electron transfer in nitric oxide synthase regulates enzyme catalysis by additional mechanisms.
    Wang ZQ; Wei CC; Santolini J; Panda K; Wang Q; Stuehr DJ
    Biochemistry; 2005 Mar; 44(12):4676-90. PubMed ID: 15779894
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.