These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

79 related articles for article (PubMed ID: 16970969)

  • 1. Design and experiment on a mini cascade thermoacoustic engine.
    Hu Z; Li Q; Xie X; Zhou G; Li Q
    Ultrasonics; 2006 Dec; 44 Suppl 1():e1515-7. PubMed ID: 16970969
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Experimental study of the influence of different resonators on thermoacoustic conversion performance of a thermoacoustic-Stirling heat engine.
    Luo EC; Ling H; Dai W; Yu GY
    Ultrasonics; 2006 Dec; 44 Suppl 1():e1507-9. PubMed ID: 16996100
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Experimental investigation of a thermoacoustic-Stirling refrigerator driven by a thermoacoustic-Stirling heat engine.
    Luo EC; Dai W; Zhang Y; Ling H
    Ultrasonics; 2006 Dec; 44 Suppl 1():e1531-3. PubMed ID: 16979679
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A cascade thermoacoustic engine.
    Gardner DL; Swift GW
    J Acoust Soc Am; 2003 Oct; 114(4 Pt 1):1905-19. PubMed ID: 14587591
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Measurement of acoustic output power in a traveling wave engine.
    Miwa M; Sumi T; Biwa T; Ueda Y; Yazaki T
    Ultrasonics; 2006 Dec; 44 Suppl 1():e1527-9. PubMed ID: 16996552
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Measurements of the impedance matrix of a thermoacoustic core: applications to the design of thermoacoustic engines.
    Bannwart FC; Penelet G; Lotton P; Dalmont JP
    J Acoust Soc Am; 2013 May; 133(5):2650-60. PubMed ID: 23654373
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A numerical simulation method and analysis of a complete thermoacoustic-Stirling engine.
    Ling H; Luo E; Dai W
    Ultrasonics; 2006 Dec; 44 Suppl 1():e1511-4. PubMed ID: 16996099
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Measurements of acoustic particle velocity in a coaxial duct and its application to a traveling-wave thermoacoustic heat engine.
    Morii J; Biwa T; Yazaki T
    Rev Sci Instrum; 2014 Sep; 85(9):094902. PubMed ID: 25273759
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multi-method modeling to predict the onset conditions and resonance of the piezo coupled thermoacoustic engine.
    Ahmed F; Yu G; Luo E
    J Acoust Soc Am; 2022 Jun; 151(6):4180. PubMed ID: 35778176
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A thermoacoustic-Stirling heat engine: detailed study.
    Backhaus S; Swift GW
    J Acoust Soc Am; 2000 Jun; 107(6):3148-66. PubMed ID: 10875360
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of a resistive load on the starting performance of a standing wave thermoacoustic engine: A numerical study.
    Ma L; Weisman C; Baltean-Carlès D; Delbende I; Bauwens L
    J Acoust Soc Am; 2015 Aug; 138(2):847-57. PubMed ID: 26328701
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of evaporation and condensation on a thermoacoustic engine: A Lagrangian simulation approach.
    Yasui K; Izu N
    J Acoust Soc Am; 2017 Jun; 141(6):4398. PubMed ID: 28618792
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Microwave thermoacoustic signal analysis of biological tissues based on the coupling of multifield].
    Tao C; Song T; Liu G; Yan J
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2008 Feb; 25(1):44-8. PubMed ID: 18435254
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Influence of resonance tube geometry shape on performance of thermoacoustic engine.
    Bao R; Chen G; Tang K; Jia Z; Cao W
    Ultrasonics; 2006 Dec; 44 Suppl 1():e1519-21. PubMed ID: 17056084
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The experimental studies of thermoacoustic cooler.
    Sakamoto S; Watanabe Y
    Ultrasonics; 2004 Apr; 42(1-9):53-6. PubMed ID: 15047261
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Open cycle traveling wave thermoacoustics: mean temperature difference at the regenerator interface.
    Weiland NT; Zinn BT
    J Acoust Soc Am; 2003 Nov; 114(5):2791-8. PubMed ID: 14650014
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Experimental demonstration of thermoacoustic energy conversion in a resonator.
    Biwa T; Tashiro Y; Mizutani U; Kozuka M; Yazaki T
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Jun; 69(6 Pt 2):066304. PubMed ID: 15244723
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Response surface methodology to supercritical carbon dioxide extraction of astaxanthin from Haematococcus pluvialis.
    Thana P; Machmudah S; Goto M; Sasaki M; Pavasant P; Shotipruk A
    Bioresour Technol; 2008 May; 99(8):3110-5. PubMed ID: 17643298
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Attainable superheat of argon-helium, argon-neon solutions.
    Baidakov VG; Kaverin AM; Andbaeva VN
    J Phys Chem B; 2008 Oct; 112(41):12973-5. PubMed ID: 18798666
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Stability analysis of thermally induced spontaneous gas oscillations in straight and looped tubes.
    Ueda Y; Kato C
    J Acoust Soc Am; 2008 Aug; 124(2):851-8. PubMed ID: 18681577
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.