BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 16971075)

  • 1. Supercritical antisolvent precipitation of PHBV microparticles.
    Costa MS; Duarte AR; Cardoso MM; Duarte CM
    Int J Pharm; 2007 Jan; 328(1):72-7. PubMed ID: 16971075
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Preparation of ethyl cellulose/methyl cellulose blends by supercritical antisolvent precipitation.
    Duarte AR; Gordillo MD; Cardoso MM; Simplício AL; Duarte CM
    Int J Pharm; 2006 Mar; 311(1-2):50-4. PubMed ID: 16423476
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Study of poly(L-lactide) microparticles based on supercritical CO2.
    Chen AZ; Pu XM; Kang YQ; Liao L; Yao YD; Yin GF
    J Mater Sci Mater Med; 2007 Dec; 18(12):2339-45. PubMed ID: 17569002
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Preparation of biodegradable microparticles using solution-enhanced dispersion by supercritical fluids (SEDS).
    Ghaderi R; Artursson P; Carlfors J
    Pharm Res; 1999 May; 16(5):676-81. PubMed ID: 10350010
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Encapsulation of lysozyme in a biodegradable polymer by precipitation with a vapor-over-liquid antisolvent.
    Young TJ; Johnston KP; Mishima K; Tanaka H
    J Pharm Sci; 1999 Jun; 88(6):640-50. PubMed ID: 10350502
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rifampicin microparticles production by supercritical antisolvent precipitation.
    Reverchon E; De Marco I; Della Porta G
    Int J Pharm; 2002 Aug; 243(1-2):83-91. PubMed ID: 12176297
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Micronization of insulin from halogenated alcohol solution using supercritical carbon dioxide as an antisolvent.
    Snavely WK; Subramaniam B; Rajewski RA; Defelippis MR
    J Pharm Sci; 2002 Sep; 91(9):2026-39. PubMed ID: 12210049
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ampicillin Nanoparticles Production via Supercritical CO2 Gas Antisolvent Process.
    Esfandiari N; Ghoreishi SM
    AAPS PharmSciTech; 2015 Dec; 16(6):1263-9. PubMed ID: 25771736
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Preparation and physicochemical properties of 10-hydroxycamptothecin (HCPT) nanoparticles by supercritical antisolvent (SAS) process.
    Zhao X; Zu Y; Jiang R; Wang Y; Li Y; Li Q; Zhao D; Zu B; Zhang B; Sun Z; Zhang X
    Int J Mol Sci; 2011; 12(4):2678-91. PubMed ID: 21731466
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Preparation, characterization and in vivo assessment of the bioavailability of glycyrrhizic acid microparticles by supercritical anti-solvent process.
    Sui X; Wei W; Yang L; Zu Y; Zhao C; Zhang L; Yang F; Zhang Z
    Int J Pharm; 2012 Feb; 423(2):471-9. PubMed ID: 22183131
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization and biological evaluation of paclitaxel-loaded poly(L-lactic acid) microparticles prepared by supercritical CO2.
    Kang Y; Wu J; Yin G; Huang Z; Liao X; Yao Y; Ouyang P; Wang H; Yang Q
    Langmuir; 2008 Jul; 24(14):7432-41. PubMed ID: 18547089
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Formation of inhalable rifampicin-poly(L-lactide) microparticles by supercritical anti-solvent process.
    Patomchaiviwat V; Paeratakul O; Kulvanich P
    AAPS PharmSciTech; 2008; 9(4):1119-29. PubMed ID: 18989787
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evaluation of drug delivery characteristics of microspheres of PMMA-PCL-cholesterol obtained by supercritical-CO2 impregnation and by dissolution-evaporation techniques.
    Elvira C; Fanovich A; Fernández M; Fraile J; San Román J; Domingo C
    J Control Release; 2004 Sep; 99(2):231-40. PubMed ID: 15380633
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Supercritical fluid assisted atomization introduced by an enhanced mixer for micronization of lysozyme: Particle morphology, size and protein stability.
    Du Z; Guan YX; Yao SJ; Zhu ZQ
    Int J Pharm; 2011 Dec; 421(2):258-68. PubMed ID: 22001535
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Preparation of budesonide and budesonide-PLA microparticles using supercritical fluid precipitation technology.
    Martin TM; Bandi N; Shulz R; Roberts CB; Kompella UB
    AAPS PharmSciTech; 2002; 3(3):E18. PubMed ID: 12916933
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Formation of bioerodible polymeric microspheres and microparticles by rapid expansion of supercritical solutions.
    Tom JW; Debenedetti PG
    Biotechnol Prog; 1991; 7(5):403-11. PubMed ID: 1369363
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Supercritical antisolvent production of biodegradable micro- and nanoparticles for controlled delivery of paclitaxel.
    Lee LY; Wang CH; Smith KA
    J Control Release; 2008 Jan; 125(2):96-106. PubMed ID: 18054107
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Preparation and physicochemical properties of vinblastine microparticles by supercritical antisolvent process.
    Zhang X; Zhao X; Zu Y; Chen X; Lu Q; Ma Y; Yang L
    Int J Mol Sci; 2012 Oct; 13(10):12598-607. PubMed ID: 23202916
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Supercritical antisolvent co-precipitation of rifampicin and ethyl cellulose.
    Djerafi R; Swanepoel A; Crampon C; Kalombo L; Labuschagne P; Badens E; Masmoudi Y
    Eur J Pharm Sci; 2017 May; 102():161-171. PubMed ID: 28302396
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of supercritical fluid density on nanoencapsulated drug particle size using the supercritical antisolvent method.
    Kalani M; Yunus R
    Int J Nanomedicine; 2012; 7():2165-72. PubMed ID: 22619552
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.