BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 16971075)

  • 21. Characterization of azacytidine/poly(L-lactic) acid particles prepared by supercritical antisolvent precipitation.
    Argemí A; Vega A; Subra-Paternault P; Saurina J
    J Pharm Biomed Anal; 2009 Dec; 50(5):847-52. PubMed ID: 19660889
    [TBL] [Abstract][Full Text] [Related]  

  • 22. CO2 and fluorinated solvent-based technologies for protein microparticle precipitation from aqueous solutions.
    Sarkari M; Darrat I; Knutson BL
    Biotechnol Prog; 2003; 19(2):448-54. PubMed ID: 12675586
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Sub-micrometer-sized biodegradable particles of poly(L-lactic acid) via the gas antisolvent spray precipitation process.
    Randolph TW; Randolph AD; Mebes M; Yeung S
    Biotechnol Prog; 1993; 9(4):429-35. PubMed ID: 7763910
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Corticosteroid microparticles produced by supercritical-assisted atomization: process optimization, product characterization, and "in vitro" performance.
    Della Porta G; Ercolino SF; Parente L; Reverchon E
    J Pharm Sci; 2006 Sep; 95(9):2062-76. PubMed ID: 16850410
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Poly(hydroxybutyrate-hydroxyvalerate) microspheres containing progesterone: preparation, morphology and release properties.
    Gangrade N; Price JC
    J Microencapsul; 1991; 8(2):185-202. PubMed ID: 1765899
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Production of drug loaded microparticles by the use of supercritical gases with the aerosol solvent extraction system (ASES) process.
    Bleich J; Müller BW
    J Microencapsul; 1996; 13(2):131-9. PubMed ID: 8999119
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Supercritical antisolvent precipitation of nimesulide: preliminary experiments.
    Moneghini M; Perissutti B; Vecchione F; Kikic I; Alessi P; Cortesi A; Princivalle F
    Curr Drug Deliv; 2007 Jul; 4(3):241-8. PubMed ID: 17627498
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Micronization and microencapsulation of felodipine by supercritical carbon dioxide.
    Chiou AH; Cheng HC; Wang DP
    J Microencapsul; 2006 May; 23(3):265-76. PubMed ID: 16801239
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Effect of emulsification-diffusion parameters on the formation of poly (3-hydroxybutyrate-co-3-hydroxyvalerate) particles.
    Göz E; Karakeçili A
    Artif Cells Nanomed Biotechnol; 2016; 44(1):226-34. PubMed ID: 25058033
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Preparation of nanoparticles of Magnolia bark extract by rapid expansion from supercritical solution into aqueous solutions.
    He S; Zhou B; Zhang S; Lei Z; Zhang Z
    J Microencapsul; 2011; 28(3):183-9. PubMed ID: 21425944
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Microparticles of soy lecithin formed by supercritical processes.
    Badens E; Magnan C; Charbit G
    Biotechnol Bioeng; 2001 Jan; 72(2):194-204. PubMed ID: 11114657
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Development and evaluation of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) and polycaprolactone microparticles of nimodipine.
    Riekes MK; Junior LR; Pereira RN; Borba PA; Fernandes D; Stulzer HK
    Curr Pharm Des; 2013; 19(41):7264-70. PubMed ID: 23489204
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Modified supercritical antisolvent method with enhanced mass transfer to fabricate drug nanoparticles.
    Kakran M; Sahoo NG; Antipina MN; Li L
    Mater Sci Eng C Mater Biol Appl; 2013 Jul; 33(5):2864-70. PubMed ID: 23623107
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Formation of nanoparticles of a hydrophilic drug using supercritical carbon dioxide and microencapsulation for sustained release.
    Thote AJ; Gupta RB
    Nanomedicine; 2005 Mar; 1(1):85-90. PubMed ID: 17292062
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Production of griseofulvin nanoparticles using supercritical CO(2) antisolvent with enhanced mass transfer.
    Chattopadhyay P; Gupta RB
    Int J Pharm; 2001 Oct; 228(1-2):19-31. PubMed ID: 11576765
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Formulation of spray-dried phenytoin loaded poly(epsilon-caprolactone) microcarrier intended for brain delivery to treat epilepsy.
    Li Z; Li Q; Simon S; Guven N; Borges K; Youan BB
    J Pharm Sci; 2007 May; 96(5):1018-30. PubMed ID: 17455322
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Solubility and precipitation of nicotinic acid in supercritical carbon dioxide.
    Rehman M; Shekunov BY; York P; Colthorpe P
    J Pharm Sci; 2001 Oct; 90(10):1570-82. PubMed ID: 11745715
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Applications of supercritical fluids to enhance the dissolution behaviors of Furosemide by generation of microparticles and solid dispersions.
    De Zordi N; Moneghini M; Kikic I; Grassi M; Del Rio Castillo AE; Solinas D; Bolger MB
    Eur J Pharm Biopharm; 2012 May; 81(1):131-41. PubMed ID: 22266263
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Identification of physical-chemical variables affecting particle size following precipitation using a supercritical fluid.
    Sacha GA; Schmitt WJ; Nail SL
    Pharm Dev Technol; 2006; 11(2):195-205. PubMed ID: 16749530
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Environmentally benign formation of polymeric microspheres by rapid expansion of supercritical carbon dioxide solution with a nonsolvent.
    Matsuyama K; Mishima K; Umemoto H; Yamaguchi S
    Environ Sci Technol; 2001 Oct; 35(20):4149-55. PubMed ID: 11686380
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.