BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

317 related articles for article (PubMed ID: 16971369)

  • 1. Thermal characteristics of microwave ablation in the vicinity of an arterial bifurcation.
    Liu YJ; Qiao AK; Nan Q; Yang XY
    Int J Hyperthermia; 2006 Sep; 22(6):491-506. PubMed ID: 16971369
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Experimental study on thermal field in the vicinity of arterial bifurcation in microwave ablation therapy.
    Lu Y; Nan Q; Du J; Li L; Qiao A; Liu Y
    Int J Hyperthermia; 2010; 26(4):316-26. PubMed ID: 20210606
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Numerical study on thermal field of microwave ablation with water-cooled antenna.
    Lu Y; Nan Q; Li L; Liu Y
    Int J Hyperthermia; 2009 Mar; 25(2):108-15. PubMed ID: 19337911
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Analysis to a critical state of thermal field in microwave ablation of liver cancer influenced by large vessels.
    Nan Q; Zheng W; Fan Z; Liu Y; Zeng Y
    Int J Hyperthermia; 2010 Feb; 26(1):34-8. PubMed ID: 20100051
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Computer-aided dynamic simulation of microwave-induced thermal distribution in coagulation of liver cancer.
    Liang P; Dong B; Yu X; Yu D; Cheng Z; Su L; Peng J; Nan Q; Wang H
    IEEE Trans Biomed Eng; 2001 Jul; 48(7):821-9. PubMed ID: 11442294
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quantification of the 3-D electromagnetic power absorption rate in tissue during transurethral prostatic microwave thermotherapy using heat transfer model.
    Zhu L; Xu LX; Chencinski N
    IEEE Trans Biomed Eng; 1998 Sep; 45(9):1163-72. PubMed ID: 9735566
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Numerical study of the effect of blood vessel on the microwave ablation shape.
    Nie X; Nan Q; Guo X; Tian Z
    Biomed Mater Eng; 2015; 26 Suppl 1():S265-70. PubMed ID: 26406011
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Calculations of heating patterns of an array of microwave interstitial antennas.
    Cherry PC; Iskander MF
    IEEE Trans Biomed Eng; 1993 Aug; 40(8):771-9. PubMed ID: 8258443
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Finite volume analysis of temperature effects induced by active MRI implants: 2. Defects on active MRI implants causing hot spots.
    Busch MH; Vollmann W; Grönemeyer DH
    Biomed Eng Online; 2006 May; 5():35. PubMed ID: 16729878
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Investigation of the thermal and tissue injury behaviour in microwave thermal therapy using a porcine kidney model.
    He X; McGee S; Coad JE; Schmidlin F; Iaizzo PA; Swanlund DJ; Kluge S; Rudie E; Bischof JC
    Int J Hyperthermia; 2004 Sep; 20(6):567-93. PubMed ID: 15370815
    [TBL] [Abstract][Full Text] [Related]  

  • 11. FDTD electromagnetic and thermal analysis of interstitial hyperthermic applicators. Finite-difference time-domain.
    Gentili GB; Leoncini M; Trembly BS; Schweizer SE
    IEEE Trans Biomed Eng; 1995 Oct; 42(10):973-80. PubMed ID: 8582727
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phantom experimental study on microwave ablation with a water-cooled antenna.
    Liu Y; Yang X; Nan Q; Xiao J; Li L
    Int J Hyperthermia; 2007 Jun; 23(4):381-6. PubMed ID: 17558737
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A 915-MHz antenna for microwave thermal ablation treatment: physical design, computer modeling and experimental measurement.
    Pisa S; Cavagnaro M; Bernardi P; Lin JC
    IEEE Trans Biomed Eng; 2001 May; 48(5):599-601. PubMed ID: 11341534
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Coupled field analysis of heat flow in the near field of a microwave applicator for tumor ablation.
    Hardie D; Sangster AJ; Cronin NJ
    Electromagn Biol Med; 2006; 25(1):29-43. PubMed ID: 16595332
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Measures of specific absorption rate (SAR) in microwave hyperthermic oncology and the influence of the dynamic bolus on clinical practice].
    Marini P; Guiot C; Baiotto B; Gabriele P
    Radiol Med; 2001 Sep; 102(3):159-67. PubMed ID: 11677459
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [The temperature control for cancer thermotherapy using interstitial microwave antenna].
    Xi X; Wang L; Wang W
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2006 Dec; 23(6):1339-42. PubMed ID: 17228739
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Infrared thermographic SAR measurements of interstitial hyperthermia applicators: errors due to thermal conduction and convection.
    Sherar MD; Gladman AS; Davidson SR; Easty AC; Joy ML
    Int J Hyperthermia; 2004 Aug; 20(5):539-55. PubMed ID: 15277026
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An edge-element based finite element model of microwave heating in hyperthermia: application to a bolus design.
    Kumaradas JC; Sherar MD
    Int J Hyperthermia; 2002; 18(5):441-53. PubMed ID: 12227930
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Finite-element analysis and in vitro experiments of placement configurations using triple antennas in microwave hepatic ablation.
    Phasukkit P; Tungjitkusolmun S; Sangworasil M
    IEEE Trans Biomed Eng; 2009 Nov; 56(11):2564-72. PubMed ID: 19628446
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mathematical modeling of thermal ablation in tissue surrounding a large vessel.
    Chen X; Saidel GM
    J Biomech Eng; 2009 Jan; 131(1):011001. PubMed ID: 19045917
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.