BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 16971484)

  • 1. Differential microarray analysis of Drosophila mushroom body transcripts using chemical ablation.
    Kobayashi M; Michaut L; Ino A; Honjo K; Nakajima T; Maruyama Y; Mochizuki H; Ando M; Ghangrekar I; Takahashi K; Saigo K; Ueda R; Gehring WJ; Furukubo-Tokunaga K
    Proc Natl Acad Sci U S A; 2006 Sep; 103(39):14417-22. PubMed ID: 16971484
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Embryonic and larval development of the Drosophila mushroom bodies: concentric layer subdivisions and the role of fasciclin II.
    Kurusu M; Awasaki T; Masuda-Nakagawa LM; Kawauchi H; Ito K; Furukubo-Tokunaga K
    Development; 2002 Jan; 129(2):409-19. PubMed ID: 11807033
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hydroxyurea-induced partial mushroom body ablation in the honeybee Apis mellifera: volumetric analysis and quantitative protein determination.
    Malun D; Plath N; Giurfa M; Moseleit AD; Müller U
    J Neurobiol; 2002 Jan; 50(1):31-44. PubMed ID: 11748631
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Brain patterning defects caused by mutations of the twin of eyeless gene in Drosophila melanogaster.
    Furukubo-Tokunaga K; Adachi Y; Kurusu M; Walldorf U
    Fly (Austin); 2009; 3(4):263-9. PubMed ID: 19901536
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cell-Type-Specific Transcriptome Analysis in the Drosophila Mushroom Body Reveals Memory-Related Changes in Gene Expression.
    Crocker A; Guan XJ; Murphy CT; Murthy M
    Cell Rep; 2016 May; 15(7):1580-1596. PubMed ID: 27160913
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hydroxyurea-induced partial mushroom body ablation does not affect acquisition and retention of olfactory differential conditioning in honeybees.
    Malun D; Giurfa M; Galizia CG; Plath N; Brandt R; Gerber B; Eisermann B
    J Neurobiol; 2002 Nov; 53(3):343-60. PubMed ID: 12382262
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Associative odor learning in Drosophila abolished by chemical ablation of mushroom bodies.
    de Belle JS; Heisenberg M
    Science; 1994 Feb; 263(5147):692-5. PubMed ID: 8303280
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mushroom body influence on locomotor activity and circadian rhythms in Drosophila melanogaster.
    Helfrich-Förster C; Wulf J; de Belle JS
    J Neurogenet; 2002; 16(2):73-109. PubMed ID: 12479377
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mushroom bodies and post-mating behaviors of Drosophila melanogaster females.
    Fleischmann I; Cotton B; Choffat Y; Spengler M; Kubli E
    J Neurogenet; 2001; 15(2):117-44. PubMed ID: 11895142
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A dynamic role for the mushroom bodies in promoting sleep in Drosophila.
    Pitman JL; McGill JJ; Keegan KP; Allada R
    Nature; 2006 Jun; 441(7094):753-6. PubMed ID: 16760979
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genetic control of development of the mushroom bodies, the associative learning centers in the Drosophila brain, by the eyeless, twin of eyeless, and Dachshund genes.
    Kurusu M; Nagao T; Walldorf U; Flister S; Gehring WJ; Furukubo-Tokunaga K
    Proc Natl Acad Sci U S A; 2000 Feb; 97(5):2140-4. PubMed ID: 10681433
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Octopamine and Dopamine differentially modulate the nicotine-induced calcium response in Drosophila Mushroom Body Kenyon Cells.
    Leyton V; Goles NI; Fuenzalida-Uribe N; Campusano JM
    Neurosci Lett; 2014 Feb; 560():16-20. PubMed ID: 24334164
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Gain-of-function screen identifies a role of the Src64 oncogene in Drosophila mushroom body development.
    Nicolaï M; Lasbleiz C; Dura JM
    J Neurobiol; 2003 Dec; 57(3):291-302. PubMed ID: 14608664
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Analysis of the Differentiation of Kenyon Cell Subtypes Using Three Mushroom Body-Preferential Genes during Metamorphosis in the Honeybee (Apis mellifera L.).
    Suenami S; Paul RK; Takeuchi H; Okude G; Fujiyuki T; Shirai K; Kubo T
    PLoS One; 2016; 11(6):e0157841. PubMed ID: 27351839
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mushroom bodies enhance initial motor activity in Drosophila.
    Serway CN; Kaufman RR; Strauss R; de Belle JS
    J Neurogenet; 2009; 23(1-2):173-84. PubMed ID: 19145515
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nuclear Transcriptomes of the Seven Neuronal Cell Types That Constitute the
    Shih MM; Davis FP; Henry GL; Dubnau J
    G3 (Bethesda); 2019 Jan; 9(1):81-94. PubMed ID: 30397017
    [TBL] [Abstract][Full Text] [Related]  

  • 17. FoxP expression identifies a Kenyon cell subtype in the honeybee mushroom bodies linking them to fruit fly αβ
    Schatton A; Scharff C
    Eur J Neurosci; 2017 Nov; 46(9):2534-2541. PubMed ID: 28921711
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The mushroom body of adult Drosophila characterized by GAL4 drivers.
    Aso Y; Grübel K; Busch S; Friedrich AB; Siwanowicz I; Tanimoto H
    J Neurogenet; 2009; 23(1-2):156-72. PubMed ID: 19140035
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bridging behavior and physiology: ion-channel perspective on mushroom body-dependent olfactory learning and memory in Drosophila.
    Gasque G; Labarca P; Delgado R; Darszon A
    J Cell Physiol; 2006 Dec; 209(3):1046-53. PubMed ID: 16924658
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Temporal and spatial expression of Drosophila Neurexin during the life cycle visualized using a DNRX-Gal4/UAS-reporter.
    Sun M; Zeng X; Xie W
    Sci China Life Sci; 2016 Jan; 59(1):68-77. PubMed ID: 26501376
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.