BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 16971484)

  • 21. Invertebrate D2 type dopamine receptor exhibits age-based plasticity of expression in the mushroom bodies of the honeybee brain.
    Humphries MA; Mustard JA; Hunter SJ; Mercer A; Ward V; Ebert PR
    J Neurobiol; 2003 Jun; 55(3):315-30. PubMed ID: 12717701
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Alcohol Causes Lasting Differential Transcription in
    Petruccelli E; Brown T; Waterman A; Ledru N; Kaun KR
    Genetics; 2020 May; 215(1):103-116. PubMed ID: 32132098
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Frequent recent origination of brain genes shaped the evolution of foraging behavior in Drosophila.
    Chen S; Spletter M; Ni X; White KP; Luo L; Long M
    Cell Rep; 2012 Feb; 1(2):118-32. PubMed ID: 22832161
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The genomic response to 20-hydroxyecdysone at the onset of Drosophila metamorphosis.
    Beckstead RB; Lam G; Thummel CS
    Genome Biol; 2005; 6(12):R99. PubMed ID: 16356271
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Steroid Hormone Ecdysone Signaling Specifies Mushroom Body Neuron Sequential Fate via Chinmo.
    Marchetti G; Tavosanis G
    Curr Biol; 2017 Oct; 27(19):3017-3024.e4. PubMed ID: 28966087
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Regulators of Long-Term Memory Revealed by Mushroom Body-Specific Gene Expression Profiling in
    Widmer YF; Bilican A; Bruggmann R; Sprecher SG
    Genetics; 2018 Aug; 209(4):1167-1181. PubMed ID: 29925565
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Centrophobism/thigmotaxis, a new role for the mushroom bodies in Drosophila.
    Besson M; Martin JR
    J Neurobiol; 2005 Feb; 62(3):386-96. PubMed ID: 15547935
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Drosophila microRNA-34 Impairs Axon Pruning of Mushroom Body γ Neurons by Downregulating the Expression of Ecdysone Receptor.
    Lai YW; Chu SY; Wei JY; Cheng CY; Li JC; Chen PL; Chen CH; Yu HH
    Sci Rep; 2016 Dec; 6():39141. PubMed ID: 28008974
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Localization of the contacts between Kenyon cells and aminergic neurons in the Drosophila melanogaster brain using SplitGFP reconstitution.
    Pech U; Pooryasin A; Birman S; Fiala A
    J Comp Neurol; 2013 Dec; 521(17):3992-4026. PubMed ID: 23784863
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The genetic basis of natural variation in mushroom body size in Drosophila melanogaster.
    Zwarts L; Vanden Broeck L; Cappuyns E; Ayroles JF; Magwire MM; Vulsteke V; Clements J; Mackay TF; Callaerts P
    Nat Commun; 2015 Dec; 6():10115. PubMed ID: 26656654
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The GABA system regulates the sparse coding of odors in the mushroom bodies of Drosophila.
    Lei Z; Chen K; Li H; Liu H; Guo A
    Biochem Biophys Res Commun; 2013 Jun; 436(1):35-40. PubMed ID: 23707718
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Identification of a novel gene, Mblk-1, that encodes a putative transcription factor expressed preferentially in the large-type Kenyon cells of the honeybee brain.
    Takeuchi H; Kage E; Sawata M; Kamikouchi A; Ohashi K; Ohara M; Fujiyuki T; Kunieda T; Sekimizu K; Natori S; Kubo T
    Insect Mol Biol; 2001 Oct; 10(5):487-94. PubMed ID: 11881813
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Identification of genes expressed preferentially in the honeybee mushroom bodies by combination of differential display and cDNA microarray.
    Takeuchi H; Fujiyuki T; Shirai K; Matsuo Y; Kamikouchi A; Fujinawa Y; Kato A; Tsujimoto A; Kubo T
    FEBS Lett; 2002 Feb; 513(2-3):230-4. PubMed ID: 11904156
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Characterization of the dCaMKII-GAL4 driver line whose expression is controlled by the Drosophila Ca2+/calmodulin-dependent protein kinase II promoter.
    Takamatsu Y; Nakagoshi H; Rachidi M; Lopes C; Nishida Y; Ohsako S
    Cell Tissue Res; 2002 Nov; 310(2):237-52. PubMed ID: 12397378
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Go signaling in mushroom bodies regulates sleep in Drosophila.
    Guo F; Yi W; Zhou M; Guo A
    Sleep; 2011 Mar; 34(3):273-81. PubMed ID: 21358844
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The neuronal architecture of the mushroom body provides a logic for associative learning.
    Aso Y; Hattori D; Yu Y; Johnston RM; Iyer NA; Ngo TT; Dionne H; Abbott LF; Axel R; Tanimoto H; Rubin GM
    Elife; 2014 Dec; 3():e04577. PubMed ID: 25535793
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Gliogenesis in the mushroom body of the carpenter ant, Camponotus japonicus.
    Nasu N; Hara K
    Zoolog Sci; 2012 Dec; 29(12):800-6. PubMed ID: 23215970
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Control of Sleep by Dopaminergic Inputs to the Drosophila Mushroom Body.
    Sitaraman D; Aso Y; Rubin GM; Nitabach MN
    Front Neural Circuits; 2015; 9():73. PubMed ID: 26617493
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Roles of the mushroom bodies in olfactory learning and photoperiodism in the blow fly Protophormia terraenovae.
    Ikeda K; Numata H; Shiga S
    J Insect Physiol; 2005 Jun; 51(6):669-80. PubMed ID: 15967457
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Origin of Drosophila mushroom body neuroblasts and generation of divergent embryonic lineages.
    Kunz T; Kraft KF; Technau GM; Urbach R
    Development; 2012 Jul; 139(14):2510-22. PubMed ID: 22675205
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.