BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 16971502)

  • 1. Functional consequences of mitochondrial proteome heterogeneity.
    Johnson DT; Harris RA; Blair PV; Balaban RS
    Am J Physiol Cell Physiol; 2007 Feb; 292(2):C698-707. PubMed ID: 16971502
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tissue heterogeneity of the mammalian mitochondrial proteome.
    Johnson DT; Harris RA; French S; Blair PV; You J; Bemis KG; Wang M; Balaban RS
    Am J Physiol Cell Physiol; 2007 Feb; 292(2):C689-97. PubMed ID: 16928776
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tissue specific phosphorylation of mitochondrial proteins isolated from rat liver, heart muscle, and skeletal muscle.
    Bak S; León IR; Jensen ON; Højlund K
    J Proteome Res; 2013 Oct; 12(10):4327-39. PubMed ID: 23991683
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Novel approach to quantify mitochondrial content and intrinsic bioenergetic efficiency across organs.
    McLaughlin KL; Hagen JT; Coalson HS; Nelson MAM; Kew KA; Wooten AR; Fisher-Wellman KH
    Sci Rep; 2020 Oct; 10(1):17599. PubMed ID: 33077793
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The responses of mitochondrial proteome in rat liver to the consumption of moderate ethanol: the possible roles of aldo-keto reductases.
    Shi L; Wang Y; Tu S; Li X; Sun M; Srivastava S; Xu N; Bhatnagar A; Liu S
    J Proteome Res; 2008 Aug; 7(8):3137-45. PubMed ID: 18597514
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Monitoring oxidative and nitrative modification of cellular proteins; a paradigm for identifying key disease related markers of oxidative stress.
    Murray J; Oquendo CE; Willis JH; Marusich MF; Capaldi RA
    Adv Drug Deliv Rev; 2008; 60(13-14):1497-503. PubMed ID: 18647628
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Linking bioenergetic function of mitochondria to tissue-specific molecular fingerprints.
    Kappler L; Hoene M; Hu C; von Toerne C; Li J; Bleher D; Hoffmann C; Böhm A; Kollipara L; Zischka H; Königsrainer A; Häring HU; Peter A; Xu G; Sickmann A; Hauck SM; Weigert C; Lehmann R
    Am J Physiol Endocrinol Metab; 2019 Aug; 317(2):E374-E387. PubMed ID: 31211616
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The human mitochondrial proteome: oxidative stress, protein modifications and oxidative phosphorylation.
    Gibson BW
    Int J Biochem Cell Biol; 2005 May; 37(5):927-34. PubMed ID: 15743667
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The mitochondrial proteome: a dynamic functional program in tissues and disease states.
    Balaban RS
    Environ Mol Mutagen; 2010 Jun; 51(5):352-9. PubMed ID: 20544878
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Physiological diversity of mitochondrial oxidative phosphorylation.
    Benard G; Faustin B; Passerieux E; Galinier A; Rocher C; Bellance N; Delage JP; Casteilla L; Letellier T; Rossignol R
    Am J Physiol Cell Physiol; 2006 Dec; 291(6):C1172-82. PubMed ID: 16807301
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evaluation of basic mitochondrial functions using rat tissue homogenates.
    Pecinová A; Drahota Z; Nůsková H; Pecina P; Houštěk J
    Mitochondrion; 2011 Sep; 11(5):722-8. PubMed ID: 21664301
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rat liver mitochondrial proteome: changes associated with aging and acetyl-L-carnitine treatment.
    Musicco C; Capelli V; Pesce V; Timperio AM; Calvani M; Mosconi L; Cantatore P; Gadaleta MN
    J Proteomics; 2011 Oct; 74(11):2536-47. PubMed ID: 21672642
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Unraveling the phosphoproteome dynamics in mammal mitochondria from a network perspective.
    Padrão AI; Vitorino R; Duarte JA; Ferreira R; Amado F
    J Proteome Res; 2013 Oct; 12(10):4257-67. PubMed ID: 23964737
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Coordination of nuclear- and mitochondrial-DNA encoded proteins in cancer and normal colon tissues.
    Mazzanti R; Giulivi C
    Biochim Biophys Acta; 2006; 1757(5-6):618-23. PubMed ID: 16730322
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tissue-, substrate-, and site-specific characteristics of mitochondrial reactive oxygen species generation.
    Tahara EB; Navarete FD; Kowaltowski AJ
    Free Radic Biol Med; 2009 May; 46(9):1283-97. PubMed ID: 19245829
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mitochondrial proteome heterogeneity between tissues from the vegetative and reproductive stages of Arabidopsis thaliana development.
    Lee CP; Eubel H; Solheim C; Millar AH
    J Proteome Res; 2012 Jun; 11(6):3326-43. PubMed ID: 22540835
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Proteome alterations in rat mitochondria caused by aging.
    Dencher NA; Frenzel M; Reifschneider NH; Sugawa M; Krause F
    Ann N Y Acad Sci; 2007 Apr; 1100():291-8. PubMed ID: 17460190
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tissue variation in the control of oxidative phosphorylation: implication for mitochondrial diseases.
    Rossignol R; Letellier T; Malgat M; Rocher C; Mazat JP
    Biochem J; 2000 Apr; 347 Pt 1(Pt 1):45-53. PubMed ID: 10727400
    [TBL] [Abstract][Full Text] [Related]  

  • 19. cis-4-Decenoic and decanoic acids impair mitochondrial energy, redox and Ca(2+) homeostasis and induce mitochondrial permeability transition pore opening in rat brain and liver: Possible implications for the pathogenesis of MCAD deficiency.
    Amaral AU; Cecatto C; da Silva JC; Wajner A; Godoy KDS; Ribeiro RT; Wajner M
    Biochim Biophys Acta; 2016 Sep; 1857(9):1363-1372. PubMed ID: 27240720
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Carrier mediated GABA translocation into rat brain mitochondria.
    Passarella S; Atlante A; Barile M; Quagliariello E
    Biochem Biophys Res Commun; 1984 Jun; 121(3):770-8. PubMed ID: 6743319
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.