BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

337 related articles for article (PubMed ID: 16971525)

  • 1. Receptor and transmitter release properties set the time course of retinal inhibition.
    Eggers ED; Lukasiewicz PD
    J Neurosci; 2006 Sep; 26(37):9413-25. PubMed ID: 16971525
    [TBL] [Abstract][Full Text] [Related]  

  • 2. GABA(A), GABA(C) and glycine receptor-mediated inhibition differentially affects light-evoked signalling from mouse retinal rod bipolar cells.
    Eggers ED; Lukasiewicz PD
    J Physiol; 2006 Apr; 572(Pt 1):215-25. PubMed ID: 16439422
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Presynaptic inhibition differentially shapes transmission in distinct circuits in the mouse retina.
    Eggers ED; McCall MA; Lukasiewicz PD
    J Physiol; 2007 Jul; 582(Pt 2):569-82. PubMed ID: 17463042
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Different types of retinal inhibition have distinct neurotransmitter release properties.
    Moore-Dotson JM; Klein JS; Mazade RE; Eggers ED
    J Neurophysiol; 2015 Apr; 113(7):2078-90. PubMed ID: 25568157
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modulation of excitatory synaptic transmission by GABA(C) receptor-mediated feedback in the mouse inner retina.
    Matsui K; Hasegawa J; Tachibana M
    J Neurophysiol; 2001 Nov; 86(5):2285-98. PubMed ID: 11698519
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Suppression by zinc of transient OFF responses of carp amacrine cells to red light is mediated by GABA(A) receptors.
    Luo DG; Yang XL
    Brain Res; 2002 Dec; 958(1):222-6. PubMed ID: 12468048
    [TBL] [Abstract][Full Text] [Related]  

  • 7. GABA transporters regulate inhibition in the retina by limiting GABA(C) receptor activation.
    Ichinose T; Lukasiewicz PD
    J Neurosci; 2002 Apr; 22(8):3285-92. PubMed ID: 11943830
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Functional properties of spontaneous IPSCs and glycine receptors in rod amacrine (AII) cells in the rat retina.
    Gill SB; Veruki ML; Hartveit E
    J Physiol; 2006 Sep; 575(Pt 3):739-59. PubMed ID: 16825305
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interneuron circuits tune inhibition in retinal bipolar cells.
    Eggers ED; Lukasiewicz PD
    J Neurophysiol; 2010 Jan; 103(1):25-37. PubMed ID: 19906884
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fast neurotransmitter release triggered by Ca influx through AMPA-type glutamate receptors.
    Chávez AE; Singer JH; Diamond JS
    Nature; 2006 Oct; 443(7112):705-8. PubMed ID: 17036006
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization of the glycinergic input to bipolar cells of the mouse retina.
    Ivanova E; Müller U; Wässle H
    Eur J Neurosci; 2006 Jan; 23(2):350-64. PubMed ID: 16420443
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Retinal synaptic pathways underlying the response of the rabbit local edge detector.
    Russell TL; Werblin FS
    J Neurophysiol; 2010 May; 103(5):2757-69. PubMed ID: 20457864
    [TBL] [Abstract][Full Text] [Related]  

  • 13. GABAergic circuitry in the opossum retina: a GABA release induced by L-aspartate.
    Calaza KC; Hokoç JN; Gardino PF
    Exp Brain Res; 2006 Jul; 172(3):322-30. PubMed ID: 16501965
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rapid desensitization converts prolonged glutamate release into a transient EPSC at ribbon synapses between retinal bipolar and amacrine cells.
    Maguire G
    Eur J Neurosci; 1999 Jan; 11(1):353-62. PubMed ID: 9987038
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Paired-pulse plasticity in the strength and latency of light-evoked lateral inhibition to retinal bipolar cell terminals.
    Vickers E; Kim MH; Vigh J; von Gersdorff H
    J Neurosci; 2012 Aug; 32(34):11688-99. PubMed ID: 22915111
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pre- and postsynaptic GABA(B) receptors modulate rapid neurotransmission from suprachiasmatic nucleus to parvocellular hypothalamic paraventricular nucleus neurons.
    Wang D; Cui LN; Renaud LP
    Neuroscience; 2003; 118(1):49-58. PubMed ID: 12676136
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Complex inhibitory microcircuitry regulates retinal signaling near visual threshold.
    Grimes WN; Zhang J; Tian H; Graydon CW; Hoon M; Rieke F; Diamond JS
    J Neurophysiol; 2015 Jul; 114(1):341-53. PubMed ID: 25972578
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Heterologous modulation of inhibitory synaptic transmission by metabotropic glutamate receptors in cultured hippocampal neurons.
    Fitzsimonds RM; Dichter MA
    J Neurophysiol; 1996 Feb; 75(2):885-93. PubMed ID: 8714661
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Distinctive glycinergic currents with fast and slow kinetics in thalamus.
    Ghavanini AA; Mathers DA; Kim HS; Puil E
    J Neurophysiol; 2006 Jun; 95(6):3438-48. PubMed ID: 16554506
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Elimination of the rho1 subunit abolishes GABA(C) receptor expression and alters visual processing in the mouse retina.
    McCall MA; Lukasiewicz PD; Gregg RG; Peachey NS
    J Neurosci; 2002 May; 22(10):4163-74. PubMed ID: 12019334
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.