These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 1697166)

  • 21. Isolation and characterization of a novel Rhodococcus strain with switchable carbonyl reductase and para-acetylphenol hydroxylase activities.
    Zhang R; Ren J; Wang Y; Wu Q; Wang M; Zhu D
    J Ind Microbiol Biotechnol; 2013 Jan; 40(1):11-20. PubMed ID: 23014895
    [TBL] [Abstract][Full Text] [Related]  

  • 22. p-cresol methylhydroxylase from a denitrifying bacterium involved in anaerobic degradation of p-cresol.
    Hopper DJ; Bossert ID; Rhodes-Roberts ME
    J Bacteriol; 1991 Feb; 173(3):1298-301. PubMed ID: 1991722
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Insight into covalent flavinylation and catalysis from redox, spectral, and kinetic analyses of the R474K mutant of the flavoprotein subunit of p-cresol methylhydroxylase.
    Efimov I; Cronin CN; Bergmann DJ; Kuusk V; McIntire WS
    Biochemistry; 2004 May; 43(20):6138-48. PubMed ID: 15147198
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Enantioselective hydroxylation of 4-alkylphenols by vanillyl alcohol oxidase.
    Drijfhout FP; Fraaije MW; Jongejan H; van Berkel WJ ; Franssen MC
    Biotechnol Bioeng; 1998 Jul; 59(2):171-7. PubMed ID: 10099328
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Anaerobic oxidation of p-cresol mediated by a partially purified methylhydroxylase from a denitrifying bacterium.
    Bossert ID; Whited G; Gibson DT; Young LY
    J Bacteriol; 1989 Jun; 171(6):2956-62. PubMed ID: 2722739
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The aromatic alcohol dehydrogenases in Pseudomonas putida N.C.I.B. 9869 grown on 3,5-xylenol and p-cresol.
    Keat MJ; Hopper DJ
    Biochem J; 1978 Nov; 175(2):659-67. PubMed ID: 743216
    [TBL] [Abstract][Full Text] [Related]  

  • 27. N-Alkane oxidation enzymes of a pseudomonad.
    Parekh VR; Traxler RW; Sobek JM
    Appl Environ Microbiol; 1977 Apr; 33(4):881-4. PubMed ID: 869535
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Regulation of enzymes of the 3,5-xylenol-degradative pathway in Pseudomonas putida: evidence for a plasmid.
    Hopper DJ; Kemp PD
    J Bacteriol; 1980 Apr; 142(1):21-6. PubMed ID: 6989805
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A Thermoanaerobacter ethanolicus secondary alcohol dehydrogenase mutant derivative highly active and stereoselective on phenylacetone and benzylacetone.
    Ziegelmann-Fjeld KI; Musa MM; Phillips RS; Zeikus JG; Vieille C
    Protein Eng Des Sel; 2007 Feb; 20(2):47-55. PubMed ID: 17283007
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Hydroxytyrosol from tyrosol using hydroxyphenylacetic acid-induced bacterial cultures and evidence of the role of 4-HPA 3-hydroxylase.
    Liebgott PP; Amouric A; Comte A; Tholozan JL; Lorquin J
    Res Microbiol; 2009 Dec; 160(10):757-66. PubMed ID: 19837158
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Periplasmic location of p-cresol methylhydroxylase in Pseudomonas putida.
    Hopper DJ; Jones MR; Causer MJ
    FEBS Lett; 1985 Mar; 182(2):485-8. PubMed ID: 3920077
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Scale-up of Baeyer-Villiger monooxygenase-catalyzed synthesis of enantiopure compounds.
    Geitner K; Rehdorf J; Snajdrova R; Bornscheuer UT
    Appl Microbiol Biotechnol; 2010 Nov; 88(5):1087-93. PubMed ID: 20689951
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Structural Basis for Selective Oxidation of Phosphorylated Ethylphenols by Cytochrome P450 Monooxygenase CreJ.
    Dong S; Chen J; Zhang X; Guo F; Ma L; You C; Wang X; Zhang W; Wan X; Liu SJ; Yao LS; Li S; Du L; Feng Y
    Appl Environ Microbiol; 2021 May; 87(11):. PubMed ID: 33712426
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The predicted σ(54)-dependent regulator EtpR is essential for expression of genes for anaerobic p-ethylphenol and p-hydroxyacetophenone degradation in "Aromatoleum aromaticum" EbN1.
    Büsing I; Kant M; Dörries M; Wöhlbrand L; Rabus R
    BMC Microbiol; 2015 Nov; 15():251. PubMed ID: 26526497
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A single loop is essential for the octamerization of vanillyl alcohol oxidase.
    Ewing TA; Gygli G; van Berkel WJ
    FEBS J; 2016 Jul; 283(13):2546-59. PubMed ID: 27214042
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The ins and outs of vanillyl alcohol oxidase: Identification of ligand migration paths.
    Gygli G; Lucas MF; Guallar V; van Berkel WJH
    PLoS Comput Biol; 2017 Oct; 13(10):e1005787. PubMed ID: 28985219
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A Bacterial Multidomain NAD-Independent d-Lactate Dehydrogenase Utilizes Flavin Adenine Dinucleotide and Fe-S Clusters as Cofactors and Quinone as an Electron Acceptor for d-Lactate Oxidization.
    Jiang T; Guo X; Yan J; Zhang Y; Wang Y; Zhang M; Sheng B; Ma C; Xu P; Gao C
    J Bacteriol; 2017 Nov; 199(22):. PubMed ID: 28847921
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Genetic analyses and molecular characterization of the pathways involved in the conversion of 2-phenylethylamine and 2-phenylethanol into phenylacetic acid in Pseudomonas putida U.
    Arias S; Olivera ER; Arcos M; Naharro G; Luengo JM
    Environ Microbiol; 2008 Feb; 10(2):413-32. PubMed ID: 18177365
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Resolution of the flavocytochrome p-cresol methylhydroxylase into subunits and reconstitution of the enzyme.
    Koerber SC; McIntire W; Bohmont C; Singer TP
    Biochemistry; 1985 Sep; 24(19):5276-80. PubMed ID: 4074695
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Hydroxylation of o-halogenophenol and o-nitrophenol by salicylate hydroxylase.
    Suzuki K; Gomi T; Kaidoh T; Itagaki E
    J Biochem; 1991 Feb; 109(2):348-53. PubMed ID: 1864847
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.