BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

808 related articles for article (PubMed ID: 16971685)

  • 21. Characteristics of H- and M-waves recorded from rat forelimbs.
    Hosoido T; Motoyama S; Goto M; Mori F; Tajima T; Hirata H; Wada N
    Neurosci Lett; 2009 Feb; 450(3):239-41. PubMed ID: 19056465
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A 3D map of the hindlimb motor representation in the lumbar spinal cord in Sprague Dawley rats.
    Borrell JA; Frost SB; Peterson J; Nudo RJ
    J Neural Eng; 2017 Feb; 14(1):016007. PubMed ID: 27934789
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Activity of spinal interneurons and their effects on forearm muscles during voluntary wrist movements in the monkey.
    Perlmutter SI; Maier MA; Fetz EE
    J Neurophysiol; 1998 Nov; 80(5):2475-94. PubMed ID: 9819257
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Arm movements evoked by electrical stimulation in the motor cortex of monkeys.
    Graziano MS; Aflalo TN; Cooke DF
    J Neurophysiol; 2005 Dec; 94(6):4209-23. PubMed ID: 16120657
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Properties of propriospinal neurons in the C3-C4 segments mediating disynaptic pyramidal excitation to forelimb motoneurons in the macaque monkey.
    Isa T; Ohki Y; Seki K; Alstermark B
    J Neurophysiol; 2006 Jun; 95(6):3674-85. PubMed ID: 16495365
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Windup of flexion reflexes in chronic human spinal cord injury: a marker for neuronal plateau potentials?
    Hornby TG; Rymer WZ; Benz EN; Schmit BD
    J Neurophysiol; 2003 Jan; 89(1):416-26. PubMed ID: 12522190
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Muscle compound motor action potentials from esophago-vertebral electrical stimulation of the spinal cord in the normal awake man.
    Caccia MR; Valla PL; Osio M; Mangoni A
    Electromyogr Clin Neurophysiol; 1999 Dec; 39(8):493-501. PubMed ID: 10627936
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Cerebellar nuclei: rapid alternating movement, motor somatotopy, and a mechanism for the control of muscle synergy.
    Thach WT; Perry JG; Kane SA; Goodkin HP
    Rev Neurol (Paris); 1993; 149(11):607-28. PubMed ID: 8091076
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Encoding of reach and grasp by single neurons in premotor cortex is independent of recording site.
    Stark E; Asher I; Abeles M
    J Neurophysiol; 2007 May; 97(5):3351-64. PubMed ID: 17360824
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Do corticomotoneuronal cells predict target muscle EMG activity?
    Griffin DM; Hudson HM; Belhaj-Saïf A; McKiernan BJ; Cheney PD
    J Neurophysiol; 2008 Mar; 99(3):1169-986. PubMed ID: 18160426
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Response patterns and force relations of monkey spinal interneurons during active wrist movement.
    Maier MA; Perlmutter SI; Fetz EE
    J Neurophysiol; 1998 Nov; 80(5):2495-513. PubMed ID: 9819258
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Postnatal development of the motor representation in primary motor cortex.
    Chakrabarty S; Martin JH
    J Neurophysiol; 2000 Nov; 84(5):2582-94. PubMed ID: 11068000
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Comparable patterns of muscle facilitation evoked by individual corticomotoneuronal (CM) cells and by single intracortical microstimuli in primates: evidence for functional groups of CM cells.
    Cheney PD; Fetz EE
    J Neurophysiol; 1985 Mar; 53(3):786-804. PubMed ID: 2984354
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Ipsi- and contralateral exteroceptive EMG modulation in uni- and bilaterally activated thenar muscles.
    Kofler M; Poustka K
    Clin Neurophysiol; 2005 Feb; 116(2):300-7. PubMed ID: 15661108
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Stimulus outputs induced by subdural electrodes on the cervical spinal cord in monkeys.
    Kato K; Nishihara Y; Nishimura Y
    J Neural Eng; 2020 Feb; 17(1):016044. PubMed ID: 32023224
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The role of neuromuscular properties in determining the end-point of a movement.
    Aoyagi Y; Stein RB; Mushahwar VK; Prochazka A
    IEEE Trans Neural Syst Rehabil Eng; 2004 Mar; 12(1):12-23. PubMed ID: 15068183
    [TBL] [Abstract][Full Text] [Related]  

  • 37. [Evoked potentials of the somatic cortex, thalamus, and electromyographic reactions of the cat shoulder muscles elicited by elbow joint straightening in norm and after injection of neurotoxin].
    Dovhalets' HV
    Fiziol Zh (1994); 2005; 51(4):36-44. PubMed ID: 16201148
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Cerebellar thalamic activity in the macaque monkey encodes the duration but not the force or velocity of wrist movement.
    Ivanusic JJ; Bourke DW; Xu ZM; Butler EG; Horne MK
    Brain Res; 2005 Apr; 1041(2):181-97. PubMed ID: 15829227
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Somatotopic organization of the lateral part of area F2 (dorsal premotor cortex) of the macaque monkey.
    Raos V; Franchi G; Gallese V; Fogassi L
    J Neurophysiol; 2003 Mar; 89(3):1503-18. PubMed ID: 12626625
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The role of vertebral column muscles in level versus upslope treadmill walking-an electromyographic and kinematic study.
    Wada N; Akatani J; Miyajima N; Shimojo K; Kanda K
    Brain Res; 2006 May; 1090(1):99-109. PubMed ID: 16682013
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 41.