These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

590 related articles for article (PubMed ID: 16971844)

  • 21. Objective accommodative amplitude and dynamics with the 1CU accommodative intraocular lens.
    Wolffsohn JS; Hunt OA; Naroo S; Gilmartin B; Shah S; Cunliffe IA; Benson MT; Mantry S
    Invest Ophthalmol Vis Sci; 2006 Mar; 47(3):1230-5. PubMed ID: 16505063
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Theoretical and measured pseudophakic accommodation after implantation of a new accommodative posterior chamber intraocular lens.
    Langenbucher A; Seitz B; Huber S; Nguyen NX; Kuchle M
    Arch Ophthalmol; 2003 Dec; 121(12):1722-7. PubMed ID: 14662592
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Anterior movement of the crystalline lens in the process of accommodation in children.
    Kaluzny BJ
    Eur J Ophthalmol; 2007; 17(4):515-20. PubMed ID: 17671924
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Real-Time Measurement of Dynamic Changes of Anterior Segment Biometry and Wavefront Aberrations During Accommodation.
    Zhu D; Shao Y; Peng Y; Chen Q; Wang J; Lu F; Shen M
    Eye Contact Lens; 2016 Sep; 42(5):322-7. PubMed ID: 26398578
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Equivalent refractive index of the human lens upon accommodative response.
    Hermans EA; Dubbelman M; Van der Heijde R; Heethaar RM
    Optom Vis Sci; 2008 Dec; 85(12):1179-84. PubMed ID: 19050472
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Pseudophakic accommodation with translation lenses--dual optic vs mono optic.
    Langenbucher A; Reese S; Jakob C; Seitz B
    Ophthalmic Physiol Opt; 2004 Sep; 24(5):450-7. PubMed ID: 15315660
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Change in shape of the aging human crystalline lens with accommodation.
    Dubbelman M; Van der Heijde GL; Weeber HA
    Vision Res; 2005 Jan; 45(1):117-32. PubMed ID: 15571742
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Anterior segment changes with age and during accommodation measured with partial coherence interferometry.
    Tsorbatzoglou A; Németh G; Széll N; Biró Z; Berta A
    J Cataract Refract Surg; 2007 Sep; 33(9):1597-601. PubMed ID: 17720076
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Predicting Accommodative Response Using Paraxial Schematic Eye Models.
    Ramasubramanian V; Glasser A
    Optom Vis Sci; 2016 Jul; 93(7):692-704. PubMed ID: 27092928
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Objective measurement of accommodative biometric changes using ultrasound biomicroscopy.
    Ramasubramanian V; Glasser A
    J Cataract Refract Surg; 2015 Mar; 41(3):511-26. PubMed ID: 25804579
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Slit-lamp studies of the rhesus monkey eye: II. Changes in crystalline lens shape, thickness and position during accommodation and aging.
    Koretz JF; Bertasso AM; Neider MW; True-Gabelt BA; Kaufman PL
    Exp Eye Res; 1987 Aug; 45(2):317-26. PubMed ID: 3653294
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Accommodation and presbyopia in the human eye. Changes in the anterior segment and crystalline lens with focus.
    Koretz JF; Cook CA; Kaufman PL
    Invest Ophthalmol Vis Sci; 1997 Mar; 38(3):569-78. PubMed ID: 9071209
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Accommodative changes in lens diameter in rhesus monkeys.
    Glasser A; Wendt M; Ostrin L
    Invest Ophthalmol Vis Sci; 2006 Jan; 47(1):278-86. PubMed ID: 16384974
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A biometric study of ocular changes during accommodation.
    Shum PJ; Ko LS; Ng CL; Lin SL
    Am J Ophthalmol; 1993 Jan; 115(1):76-81. PubMed ID: 8420382
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Spatially variant changes in lens power during ocular accommodation in a rhesus monkey eye.
    Vilupuru AS; Roorda A; Glasser A
    J Vis; 2004 Apr; 4(4):299-309. PubMed ID: 15134477
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Biometry of anterior segment of human eye on both horizontal and vertical meridians during accommodation imaged with extended scan depth optical coherence tomography.
    Leng L; Yuan Y; Chen Q; Shen M; Ma Q; Lin B; Zhu D; Qu J; Lu F
    PLoS One; 2014; 9(8):e104775. PubMed ID: 25117696
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Biometry and visual function of a healthy cohort in Leipzig, Germany.
    Zocher MT; Rozema JJ; Oertel N; Dawczynski J; Wiedemann P; Rauscher FG;
    BMC Ophthalmol; 2016 Jun; 16():79. PubMed ID: 27268271
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Axial growth and changes in lenticular and corneal power during emmetropization in infants.
    Mutti DO; Mitchell GL; Jones LA; Friedman NE; Frane SL; Lin WK; Moeschberger ML; Zadnik K
    Invest Ophthalmol Vis Sci; 2005 Sep; 46(9):3074-80. PubMed ID: 16123404
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Does convergence, not accommodation, cause axial-length elongation at near? A biometric study in teens.
    Bayramlar H; Cekiç O; Hepşen IF
    Ophthalmic Res; 1999; 31(4):304-8. PubMed ID: 10325546
    [TBL] [Abstract][Full Text] [Related]  

  • 40. [One-year longitudinal change in parameters of myopic school children trained by a new accommodative training device--uncorrected visual acuity, refraction, axial length, accommodation, and pupil reaction].
    Watanabe K; Hara N; Kimijima M; Kotegawa Y; Ohno K; Arimoto A; Mukuno K; Hisahara S; Horie H
    Nippon Ganka Gakkai Zasshi; 2012 Oct; 116(10):929-36. PubMed ID: 23285840
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 30.