These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 16972017)

  • 1. Reduced loading due to spinal-cord injury at birth results in "slender" bones: a case study.
    Giangregorio LM; McCartney N
    Osteoporos Int; 2007 Jan; 18(1):117-20. PubMed ID: 16972017
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Muscle Density and Bone Quality of the Distal Lower Extremity Among Individuals with Chronic Spinal Cord Injury.
    Gibbs JC; Craven BC; Moore C; Thabane L; Adachi JD; Giangregorio LM
    Top Spinal Cord Inj Rehabil; 2015; 21(4):282-93. PubMed ID: 26689693
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An evaluation of the muscle-bone unit theory among individuals with chronic spinal cord injury.
    Totosy de Zepetnek JO; Craven BC; Giangregorio LM
    Spinal Cord; 2012 Feb; 50(2):147-52. PubMed ID: 21894164
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bone adaptation to altered loading after spinal cord injury: a study of bone and muscle strength.
    Rittweger J; Gerrits K; Altenburg T; Reeves N; Maganaris CN; de Haan A
    J Musculoskelet Neuronal Interact; 2006; 6(3):269-76. PubMed ID: 17142949
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Can body weight supported treadmill training increase bone mass and reverse muscle atrophy in individuals with chronic incomplete spinal cord injury?
    Giangregorio LM; Webber CE; Phillips SM; Hicks AL; Craven BC; Bugaresti JM; McCartney N
    Appl Physiol Nutr Metab; 2006 Jun; 31(3):283-91. PubMed ID: 16770357
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Exploring changes in bone mass in individuals with a chronic spinal cord injury.
    El-Kotob R; Craven BC; Thabane L; Papaioannou A; Adachi JD; Giangregorio LM
    Osteoporos Int; 2021 Apr; 32(4):759-767. PubMed ID: 33089353
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Musculoskeletal changes in women with spinal cord injury: a twin study.
    Giangregorio LM; Craven BC; Webber CE
    J Clin Densitom; 2005; 8(3):347-51. PubMed ID: 16055967
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Lower-extremity muscle cross-sectional area after incomplete spinal cord injury.
    Shah PK; Stevens JE; Gregory CM; Pathare NC; Jayaraman A; Bickel SC; Bowden M; Behrman AL; Walter GA; Dudley GA; Vandenborne K
    Arch Phys Med Rehabil; 2006 Jun; 87(6):772-8. PubMed ID: 16731211
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Meagre effects of disuse on the human fibula are not explained by bone size or geometry.
    Ireland A; Capozza RF; Cointry GR; Nocciolino L; Ferretti JL; Rittweger J
    Osteoporos Int; 2017 Feb; 28(2):633-641. PubMed ID: 27734100
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Decreases in bone mineral density at cortical and trabecular sites in the tibia and femur during the first year of spinal cord injury.
    Coupaud S; McLean AN; Purcell M; Fraser MH; Allan DB
    Bone; 2015 May; 74():69-75. PubMed ID: 25596521
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Deteriorated geometric structure and strength of the midfemur in men with complete spinal cord injury.
    Modlesky CM; Slade JM; Bickel CS; Meyer RA; Dudley GA
    Bone; 2005 Feb; 36(2):331-9. PubMed ID: 15780960
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Changes in the structural and material properties of the tibia in patients with spinal cord injury.
    McCarthy ID; Bloomer Z; Gall A; Keen R; Ferguson-Pell M
    Spinal Cord; 2012 Apr; 50(4):333-7. PubMed ID: 22124349
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Assessment of anthropometric, systemic, and lifestyle factors influencing bone status in the legs of spinal cord injured individuals.
    Eser P; Frotzler A; Zehnder Y; Schiessl H; Denoth J
    Osteoporos Int; 2005 Jan; 16(1):26-34. PubMed ID: 15138665
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Femoral bone marrow adiposity and cortical bone cross-sectional areas in men with motor complete spinal cord injury.
    Gorgey AS; Poarch HJ; Adler RA; Khalil RE; Gater DR
    PM R; 2013 Nov; 5(11):939-48. PubMed ID: 23684921
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaluation of bone mineral density and morphology using pQCT in children after spinal cord injury.
    Biggin A; Briody JN; Ramjan KA; Middleton A; Waugh MC; Munns CF
    Dev Neurorehabil; 2013 Dec; 16(6):391-7. PubMed ID: 23477616
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bone loss and mechanical properties of tibia in spinal cord injured men.
    Dionyssiotis Y; Trovas G; Galanos A; Raptou P; Papaioannou N; Papagelopoulos P; Petropoulou K; Lyritis GP
    J Musculoskelet Neuronal Interact; 2007; 7(1):62-8. PubMed ID: 17396008
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Regional cortical and trabecular bone loss after spinal cord injury.
    Dudley-Javoroski S; Shields RK
    J Rehabil Res Dev; 2012; 49(9):1365-76. PubMed ID: 23408218
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Measuring apparent trabecular density and bone structure using peripheral quantitative computed tomography at the tibia: precision in participants with and without spinal cord injury.
    Giangregorio L; Lala D; Hummel K; Gordon C; Craven BC
    J Clin Densitom; 2013; 16(2):139-46. PubMed ID: 22981715
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Asymmetric bone adaptations to soleus mechanical loading after spinal cord injury.
    Dudley-Javoroski S; Shields RK
    J Musculoskelet Neuronal Interact; 2008; 8(3):227-38. PubMed ID: 18799855
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The effect of high versus low loading on bone strength in middle life.
    Milgrom C; Constantini N; Milgrom Y; Lavi D; Appelbaum Y; Novack V; Finestone A
    Bone; 2012 Apr; 50(4):865-9. PubMed ID: 22252043
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.