These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 16972294)

  • 1. Molecular transporters: synthesis of oligoguanidinium transporters and their application to drug delivery and real-time imaging.
    Goun EA; Pillow TH; Jones LR; Rothbard JB; Wender PA
    Chembiochem; 2006 Oct; 7(10):1497-515. PubMed ID: 16972294
    [No Abstract]   [Full Text] [Related]  

  • 2. Quantitation of cellular and topical uptake of luciferin-oligoarginine conjugates.
    Rothbard JB; Jones LR
    Methods Mol Biol; 2011; 683():487-504. PubMed ID: 21053152
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Intracellular transduction using cell-penetrating peptides.
    Sawant R; Torchilin V
    Mol Biosyst; 2010 Apr; 6(4):628-40. PubMed ID: 20237640
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Design and synthesis of a new polymer drug delivery conjugate.
    Christie RJ; Findley DJ; Grainger DW
    Biomed Sci Instrum; 2004; 40():136-41. PubMed ID: 15133948
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Oligoarginine vectors for intracellular delivery: design and cellular-uptake mechanisms.
    Futaki S
    Biopolymers; 2006; 84(3):241-9. PubMed ID: 16333858
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Peptide-mediated cell transport of water soluble porphyrin conjugates.
    Sibrian-Vazquez M; Jensen TJ; Hammer RP; Vicente MG
    J Med Chem; 2006 Feb; 49(4):1364-72. PubMed ID: 16480271
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Highly efficient, nonpeptidic oligoguanidinium vectors that selectively internalize into mitochondria.
    Fernández-Carneado J; Van Gool M; Martos V; Castel S; Prados P; de Mendoza J; Giralt E
    J Am Chem Soc; 2005 Jan; 127(3):869-74. PubMed ID: 15656624
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The augmentation of intracellular delivery of peptide therapeutics by artificial protein transduction domains.
    Yoshikawa T; Sugita T; Mukai Y; Abe Y; Nakagawa S; Kamada H; Tsunoda S; Tsutsumi Y
    Biomaterials; 2009 Jul; 30(19):3318-23. PubMed ID: 19304319
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular engineering of dendritic polymers and their application as drug and gene delivery systems.
    Paleos CM; Tsiourvas D; Sideratou Z
    Mol Pharm; 2007; 4(2):169-88. PubMed ID: 17222053
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tuning the transport properties of HIV-1 Tat arginine-rich motif in living cells.
    Cardarelli F; Serresi M; Bizzarri R; Beltram F
    Traffic; 2008 Apr; 9(4):528-39. PubMed ID: 18182009
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Guanidinylated dendritic molecular transporters: prospective drug delivery systems and application in cell transfection.
    Theodossiou TA; Pantos A; Tsogas I; Paleos CM
    ChemMedChem; 2008 Nov; 3(11):1635-43. PubMed ID: 18985650
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The design, synthesis, and evaluation of molecules that enable or enhance cellular uptake: peptoid molecular transporters.
    Wender PA; Mitchell DJ; Pattabiraman K; Pelkey ET; Steinman L; Rothbard JB
    Proc Natl Acad Sci U S A; 2000 Nov; 97(24):13003-8. PubMed ID: 11087855
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecular transplantation: delivery of membranous proteins onto live cells.
    Orita M; Masuko-Hongo K; Yotsuyanagi H; Matsui T; Suzuki-Kurokawa M; Nishioka K; Kato T
    Anal Biochem; 2005 May; 340(1):184-6. PubMed ID: 15802147
    [No Abstract]   [Full Text] [Related]  

  • 14. Translocation of branched-chain arginine peptides through cell membranes: flexibility in the spatial disposition of positive charges in membrane-permeable peptides.
    Futaki S; Nakase I; Suzuki T; Youjun Z; Sugiura Y
    Biochemistry; 2002 Jun; 41(25):7925-30. PubMed ID: 12069581
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nonclassical transport proteins and peptides: an alternative to classical macromolecule delivery systems.
    Kueltzo LA; Middaugh CR
    J Pharm Sci; 2003 Sep; 92(9):1754-72. PubMed ID: 12949995
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Simplified preparation via streptavidin of antisense oligomers/carriers nanoparticles showing improved cellular delivery in culture.
    Wang Y; Nakamura K; Liu X; Kitamura N; Kubo A; Hnatowich DJ
    Bioconjug Chem; 2007; 18(4):1338-43. PubMed ID: 17605463
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tat peptide-mediated intracellular delivery of pharmaceutical nanocarriers.
    Torchilin VP
    Adv Drug Deliv Rev; 2008 Mar; 60(4-5):548-58. PubMed ID: 18053612
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Organelle-targeted delivery of biological macromolecules using the protein transduction domain: potential applications for Peptide aptamer delivery into the nucleus.
    Yoshikawa T; Sugita T; Mukai Y; Yamanada N; Nagano K; Nabeshi H; Yoshioka Y; Nakagawa S; Abe Y; Kamada H; Tsunoda S; Tsutsumi Y
    J Mol Biol; 2008 Jul; 380(5):777-82. PubMed ID: 18571668
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Stereochemistry of guanidine-metal interactions: implications for L-arginine-metal interactions in protein structure and function.
    Di Costanzo L; Flores LV; Christianson DW
    Proteins; 2006 Nov; 65(3):637-42. PubMed ID: 16981206
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Adaptive translocation: the role of hydrogen bonding and membrane potential in the uptake of guanidinium-rich transporters into cells.
    Rothbard JB; Jessop TC; Wender PA
    Adv Drug Deliv Rev; 2005 Feb; 57(4):495-504. PubMed ID: 15722160
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.