These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
398 related articles for article (PubMed ID: 16972867)
1. Biosynthesis and secretion of mugineic acid family phytosiderophores in zinc-deficient barley. Suzuki M; Takahashi M; Tsukamoto T; Watanabe S; Matsuhashi S; Yazaki J; Kishimoto N; Kikuchi S; Nakanishi H; Mori S; Nishizawa NK Plant J; 2006 Oct; 48(1):85-97. PubMed ID: 16972867 [TBL] [Abstract][Full Text] [Related]
2. Induced activity of adenine phosphoribosyltransferase (APRT) in iron-deficiency barley roots: a possible role for phytosiderophore production. Itai R; Suzuki K; Yamaguchi H; Nakanishi H; Nishizawa NK; Yoshimura E; Mori S J Exp Bot; 2000 Jul; 51(348):1179-88. PubMed ID: 10937693 [TBL] [Abstract][Full Text] [Related]
3. The rice bHLH protein OsIRO2 is an essential regulator of the genes involved in Fe uptake under Fe-deficient conditions. Ogo Y; Itai RN; Nakanishi H; Kobayashi T; Takahashi M; Mori S; Nishizawa NK Plant J; 2007 Aug; 51(3):366-77. PubMed ID: 17559517 [TBL] [Abstract][Full Text] [Related]
4. Deoxymugineic acid increases Zn translocation in Zn-deficient rice plants. Suzuki M; Tsukamoto T; Inoue H; Watanabe S; Matsuhashi S; Takahashi M; Nakanishi H; Mori S; Nishizawa NK Plant Mol Biol; 2008 Apr; 66(6):609-17. PubMed ID: 18224446 [TBL] [Abstract][Full Text] [Related]
5. cDNA microarray analysis of gene expression during Fe-deficiency stress in barley suggests that polar transport of vesicles is implicated in phytosiderophore secretion in Fe-deficient barley roots. Negishi T; Nakanishi H; Yazaki J; Kishimoto N; Fujii F; Shimbo K; Yamamoto K; Sakata K; Sasaki T; Kikuchi S; Mori S; Nishizawa NK Plant J; 2002 Apr; 30(1):83-94. PubMed ID: 11967095 [TBL] [Abstract][Full Text] [Related]
6. Time course analysis of gene expression over 24 hours in Fe-deficient barley roots. Nagasaka S; Takahashi M; Nakanishi-Itai R; Bashir K; Nakanishi H; Mori S; Nishizawa NK Plant Mol Biol; 2009 Mar; 69(5):621-31. PubMed ID: 19089316 [TBL] [Abstract][Full Text] [Related]
7. Real-time [11C]methionine translocation in barley in relation to mugineic acid phytosiderophore biosynthesis. Bughio N; Nakanishi H; Kiyomiya S; Matsuhashi S; Ishioka NS; Watanabe S; Uchida H; Tsuji A; Osa A; Kume T; Hashimoto S; Sekine T; Mori S Planta; 2001 Sep; 213(5):708-15. PubMed ID: 11678274 [TBL] [Abstract][Full Text] [Related]
8. Expression of iron-acquisition-related genes in iron-deficient rice is co-ordinately induced by partially conserved iron-deficiency-responsive elements. Kobayashi T; Suzuki M; Inoue H; Itai RN; Takahashi M; Nakanishi H; Mori S; Nishizawa NK J Exp Bot; 2005 May; 56(415):1305-16. PubMed ID: 15781441 [TBL] [Abstract][Full Text] [Related]
9. Overexpression of the OsZIP4 zinc transporter confers disarrangement of zinc distribution in rice plants. Ishimaru Y; Masuda H; Suzuki M; Bashir K; Takahashi M; Nakanishi H; Mori S; Nishizawa NK J Exp Bot; 2007; 58(11):2909-15. PubMed ID: 17630290 [TBL] [Abstract][Full Text] [Related]
11. Expression of a gene specific for iron deficiency (Ids3) in the roots of Hordeum vulgare. Nakanishi H; Okumura N; Umehara Y; Nishizawa NK; Chino M; Mori S Plant Cell Physiol; 1993 Apr; 34(3):401-10. PubMed ID: 8019781 [TBL] [Abstract][Full Text] [Related]
12. A study of the role of root morphological traits in growth of barley in zinc-deficient soil. Genc Y; Huang CY; Langridge P J Exp Bot; 2007; 58(11):2775-84. PubMed ID: 17609531 [TBL] [Abstract][Full Text] [Related]
13. Responses to iron limitation in Hordeum vulgare L. as affected by the atmospheric CO2 concentration. Haase S; Rothe A; Kania A; Wasaki J; Römheld V; Engels C; Kandeler E; Neumann G J Environ Qual; 2008; 37(3):1254-62. PubMed ID: 18453445 [TBL] [Abstract][Full Text] [Related]
14. Isolation and characterization of IRO2, a novel iron-regulated bHLH transcription factor in graminaceous plants. Ogo Y; Itai RN; Nakanishi H; Inoue H; Kobayashi T; Suzuki M; Takahashi M; Mori S; Nishizawa NK J Exp Bot; 2006; 57(11):2867-78. PubMed ID: 16887895 [TBL] [Abstract][Full Text] [Related]
15. Toward mechanistic elucidation of iron acquisition in barley: efficient synthesis of mugineic acids and their transport activities. Namba K; Murata Y Chem Rec; 2010 Apr; 10(2):140-50. PubMed ID: 20354995 [TBL] [Abstract][Full Text] [Related]
16. Increased expression of six ZIP family genes by zinc (Zn) deficiency is associated with enhanced uptake and root-to-shoot translocation of Zn in barley (Hordeum vulgare). Tiong J; McDonald G; Genc Y; Shirley N; Langridge P; Huang CY New Phytol; 2015 Sep; 207(4):1097-109. PubMed ID: 25904503 [TBL] [Abstract][Full Text] [Related]
17. Enhanced tolerance of rice to low iron availability in alkaline soils using barley nicotianamine aminotransferase genes. Takahashi M; Nakanishi H; Kawasaki S; Nishizawa NK; Mori S Nat Biotechnol; 2001 May; 19(5):466-9. PubMed ID: 11329018 [TBL] [Abstract][Full Text] [Related]
18. Iron deficiency tolerance traits in wild (Hordeum maritimum) and cultivated barley (Hordeum vulgare). Yousfi S; Rabhi M; Abdelly C; Gharsalli M C R Biol; 2009 Jun; 332(6):523-33. PubMed ID: 19520315 [TBL] [Abstract][Full Text] [Related]
19. Uptake of Zn and Fe by wheat (Triticum aestivum var. Greina) and transfer to the grains in the presence of chelating agents (ethylenediaminedisuccinic acid and ethylenediaminetetraacetic acid). Nowack B; Schwyzer I; Schulin R J Agric Food Chem; 2008 Jun; 56(12):4643-9. PubMed ID: 18512939 [TBL] [Abstract][Full Text] [Related]