BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

227 related articles for article (PubMed ID: 16973176)

  • 1. Modularity of the transcriptional response of protein complexes in yeast.
    Simonis N; Gonze D; Orsi C; van Helden J; Wodak SJ
    J Mol Biol; 2006 Oct; 363(2):589-610. PubMed ID: 16973176
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Module networks: identifying regulatory modules and their condition-specific regulators from gene expression data.
    Segal E; Shapira M; Regev A; Pe'er D; Botstein D; Koller D; Friedman N
    Nat Genet; 2003 Jun; 34(2):166-76. PubMed ID: 12740579
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Genetic dissection of transcriptional regulation in budding yeast.
    Brem RB; Yvert G; Clinton R; Kruglyak L
    Science; 2002 Apr; 296(5568):752-5. PubMed ID: 11923494
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The transcriptional regulation of protein complexes; a cross-species perspective.
    Webb EC; Westhead DR
    Genomics; 2009 Dec; 94(6):369-76. PubMed ID: 19698777
    [TBL] [Abstract][Full Text] [Related]  

  • 5. New weakly expressed cell cycle-regulated genes in yeast.
    de Lichtenberg U; Wernersson R; Jensen TS; Nielsen HB; Fausbøll A; Schmidt P; Hansen FB; Knudsen S; Brunak S
    Yeast; 2005 Nov; 22(15):1191-201. PubMed ID: 16278933
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dynamic complex formation during the yeast cell cycle.
    de Lichtenberg U; Jensen LJ; Brunak S; Bork P
    Science; 2005 Feb; 307(5710):724-7. PubMed ID: 15692050
    [TBL] [Abstract][Full Text] [Related]  

  • 7. D-Serine exposure resulted in gene expression changes indicative of activation of fibrogenic pathways and down-regulation of energy metabolism and oxidative stress response.
    Soto A; DelRaso NJ; Schlager JJ; Chan VT
    Toxicology; 2008 Jan; 243(1-2):177-92. PubMed ID: 18061331
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification of modules in Aspergillus niger by gene co-expression network analysis.
    van den Berg RA; Braaksma M; van der Veen D; van der Werf MJ; Punt PJ; van der Oost J; de Graaff LH
    Fungal Genet Biol; 2010 Jun; 47(6):539-50. PubMed ID: 20350613
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transcriptional networks: reverse-engineering gene regulation on a global scale.
    Chua G; Robinson MD; Morris Q; Hughes TR
    Curr Opin Microbiol; 2004 Dec; 7(6):638-46. PubMed ID: 15556037
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Genome-wide analysis of the cis-regulatory modules of divergent gene pairs in yeast.
    Su CH; Shih CH; Chang TH; Tsai HK
    Genomics; 2010 Dec; 96(6):352-61. PubMed ID: 20826206
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Rpn4p is a positive and negative transcriptional regulator of the ubiquitin-proteasome system].
    Karpov DS; Osipov SA; Preobrazhenskaia OV; Karpov VL
    Mol Biol (Mosk); 2008; 42(3):518-25. PubMed ID: 18702311
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Early expression of yeast genes affected by chemical stress.
    Lucau-Danila A; Lelandais G; Kozovska Z; Tanty V; Delaveau T; Devaux F; Jacq C
    Mol Cell Biol; 2005 Mar; 25(5):1860-8. PubMed ID: 15713640
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A specific transcriptional response of yeast cells to camptothecin dependent on the Swi4 and Mbp1 factors.
    Lotito L; Russo A; Bueno S; Chillemi G; Fogli MV; Capranico G
    Eur J Pharmacol; 2009 Jan; 603(1-3):29-36. PubMed ID: 19094980
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Detecting functional modules in the yeast protein-protein interaction network.
    Chen J; Yuan B
    Bioinformatics; 2006 Sep; 22(18):2283-90. PubMed ID: 16837529
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Genomic association of the proteasome demonstrates overlapping gene regulatory activity with transcription factor substrates.
    Auld KL; Brown CR; Casolari JM; Komili S; Silver PA
    Mol Cell; 2006 Mar; 21(6):861-71. PubMed ID: 16543154
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Exploration of essential gene functions via titratable promoter alleles.
    Mnaimneh S; Davierwala AP; Haynes J; Moffat J; Peng WT; Zhang W; Yang X; Pootoolal J; Chua G; Lopez A; Trochesset M; Morse D; Krogan NJ; Hiley SL; Li Z; Morris Q; Grigull J; Mitsakakis N; Roberts CJ; Greenblatt JF; Boone C; Kaiser CA; Andrews BJ; Hughes TR
    Cell; 2004 Jul; 118(1):31-44. PubMed ID: 15242642
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Genetic regulation mediated by thiamin pyrophosphate-binding motif in Saccharomyces cerevisiae.
    Nosaka K; Onozuka M; Konno H; Kawasaki Y; Nishimura H; Sano M; Akaji K
    Mol Microbiol; 2005 Oct; 58(2):467-79. PubMed ID: 16194233
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification and characterization of rns4/vps32 mutation in the RNase T1 expression-sensitive strain of Saccharomyces cerevisiae: Evidence for altered ambient response resulting in transportation of the secretory protein to vacuoles.
    Unno K; Juvvadi PR; Nakajima H; Shirahige K; Kitamoto K
    FEMS Yeast Res; 2005 Jun; 5(9):801-12. PubMed ID: 15925308
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Stimulation of RNA polymerase II transcript cleavage activity contributes to maintain transcriptional fidelity in yeast.
    Koyama H; Ito T; Nakanishi T; Sekimizu K
    Genes Cells; 2007 May; 12(5):547-59. PubMed ID: 17535246
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Expression profiling of the bottom fermenting yeast Saccharomyces pastorianus orthologous genes using oligonucleotide microarrays.
    Minato T; Yoshida S; Ishiguro T; Shimada E; Mizutani S; Kobayashi O; Yoshimoto H
    Yeast; 2009 Mar; 26(3):147-65. PubMed ID: 19243081
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.