BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 16973278)

  • 61. Prostaglandin induced, stress related, phospholipid changes in blood and brain.
    Polis B; Miller RP; Grandizio AM; Schwarz HP; Polis E; Dreisbach L
    Physiol Chem Phys; 1974; 6(4):287-98. PubMed ID: 4457933
    [No Abstract]   [Full Text] [Related]  

  • 62. Regional levels of brain phospholipase Cgamma in Alzheimer's disease.
    Zhang D; Dhillon H; Prasad MR; Markesbery WR
    Brain Res; 1998 Nov; 811(1-2):161-5. PubMed ID: 9804940
    [TBL] [Abstract][Full Text] [Related]  

  • 63. m-Calpain (calcium-activated neutral proteinase) in Alzheimer's disease brains.
    Tsuji T; Shimohama S; Kimura J; Shimizu K
    Neurosci Lett; 1998 May; 248(2):109-12. PubMed ID: 9654354
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Phospholipase C isozymes in the human brain and their changes in Alzheimer's disease.
    Shimohama S; Sasaki Y; Fujimoto S; Kamiya S; Taniguchi T; Takenawa T; Kimura J
    Neuroscience; 1998 Feb; 82(4):999-1007. PubMed ID: 9466424
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Targeted Lipidomics of Mitochondria in a Cellular Alzheimer's Disease Model.
    Kurokin I; Lauer AA; Janitschke D; Winkler J; Theiss EL; Griebsch LV; Pilz SM; Matschke V; van der Laan M; Grimm HS; Hartmann T; Grimm MOW
    Biomedicines; 2021 Aug; 9(8):. PubMed ID: 34440266
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Evidence for a selective decrease in type 1 phosphatidylinositol kinase activity in brains of patients with Alzheimer's disease.
    Bothmer J; Markerink M; Jolles J
    Dementia; 1994; 5(1):6-11. PubMed ID: 8156090
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Cellular expression and function of phospholipase D1.
    Ktistakis NT; Manifava M; Sugars J; Bi K; Roth MG
    Biochem Soc Trans; 1999 Aug; 27(4):634-7. PubMed ID: 10917656
    [No Abstract]   [Full Text] [Related]  

  • 68. Respiratory chain enzyme activities in isolated mitochondria of lymphocytes from patients with Alzheimer's disease.
    Molina JA; de Bustos F; Jiménez-Jiménez FJ; Benito-León J; Gasalla T; Ortí-Pareja M; Vela L; Bermejo F; Martín MA; Campos Y; Arenas J
    Neurology; 1997 Mar; 48(3):636-8. PubMed ID: 9065539
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Phospholipase D, a Novel Therapeutic Target Contributes to the Pathogenesis of Neurodegenerative and Neuroimmune Diseases.
    Zhang W; Zhu F; Zhu J; Liu K
    Anal Cell Pathol (Amst); 2024; 2024():6681911. PubMed ID: 38487684
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Functional Role of Phospholipase D in Bone Metabolism.
    Kim HJ; Lee DK; Choi JY
    J Bone Metab; 2023 May; 30(2):117-125. PubMed ID: 37449345
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Phospholipase D1 Attenuation Therapeutics Promotes Resilience against Synaptotoxicity in 12-Month-Old 3xTg-AD Mouse Model of Progressive Neurodegeneration.
    Natarajan C; Cook C; Ramaswamy K; Krishnan B
    Int J Mol Sci; 2023 Feb; 24(4):. PubMed ID: 36834781
    [TBL] [Abstract][Full Text] [Related]  

  • 72. An expanded set of genome-wide association studies of brain imaging phenotypes in UK Biobank.
    Smith SM; Douaud G; Chen W; Hanayik T; Alfaro-Almagro F; Sharp K; Elliott LT
    Nat Neurosci; 2021 May; 24(5):737-745. PubMed ID: 33875891
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Untargeted lipidomics reveals progression of early Alzheimer's disease in APP/PS1 transgenic mice.
    Zhang X; Liu W; Zan J; Wu C; Tan W
    Sci Rep; 2020 Sep; 10(1):14509. PubMed ID: 32884056
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Suppressing aberrant phospholipase D1 signaling in 3xTg Alzheimer's disease mouse model promotes synaptic resilience.
    Bourne KZ; Natarajan C; Perez CXM; Tumurbaatar B; Taglialatela G; Krishnan B
    Sci Rep; 2019 Dec; 9(1):18342. PubMed ID: 31797996
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Elevated phospholipase D isoform 1 in Alzheimer's disease patients' hippocampus: Relevance to synaptic dysfunction and memory deficits.
    Krishnan B; Kayed R; Taglialatela G
    Alzheimers Dement (N Y); 2018; 4():89-102. PubMed ID: 29560412
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Phospholipase D and Its Essential Role in Cancer.
    Cho JH; Han JS
    Mol Cells; 2017 Nov; 40(11):805-813. PubMed ID: 29145720
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Targeting phospholipase D in cancer, infection and neurodegenerative disorders.
    Brown HA; Thomas PG; Lindsley CW
    Nat Rev Drug Discov; 2017 May; 16(5):351-367. PubMed ID: 28209987
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Palmitic acid and oleic acid differentially regulate choline transporter-like 1 levels and glycerolipid metabolism in skeletal muscle cells.
    Schenkel LC; Bakovic M
    Lipids; 2014 Aug; 49(8):731-44. PubMed ID: 24972900
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Phosphatidic acid (PA)-preferring phospholipase A1 regulates mitochondrial dynamics.
    Baba T; Kashiwagi Y; Arimitsu N; Kogure T; Edo A; Maruyama T; Nakao K; Nakanishi H; Kinoshita M; Frohman MA; Yamamoto A; Tani K
    J Biol Chem; 2014 Apr; 289(16):11497-11511. PubMed ID: 24599962
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Formation and regulation of mitochondrial membranes.
    Schenkel LC; Bakovic M
    Int J Cell Biol; 2014; 2014():709828. PubMed ID: 24578708
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.