BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 16973316)

  • 1. Effects of exposing gonadectomized and intact C57BL/6J mice to a high-frequency augmented acoustic environment: Auditory brainstem response thresholds and cytocochleograms.
    Willott JF; VandenBosche J; Shimizu T; Ding DL; Salvi R
    Hear Res; 2006 Nov; 221(1-2):73-81. PubMed ID: 16973316
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of exposing C57BL/6J mice to high- and low-frequency augmented acoustic environments: auditory brainstem response thresholds, cytocochleograms, anterior cochlear nucleus morphology and the role of gonadal hormones.
    Willott JF; VandenBosche J; Shimizu T; Ding DL; Salvi R
    Hear Res; 2008 Jan; 235(1-2):60-71. PubMed ID: 18077117
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of exposing DBA/2J mice to a high-frequency augmented acoustic environment on the cochlea and anteroventral cochlear nucleus.
    Willott JF; Bosch JV; Shimizu T; Ding DL
    Hear Res; 2006; 216-217():138-45. PubMed ID: 16497456
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of sex, gonadal hormones, and augmented acoustic environments on sensorineural hearing loss and the central auditory system: insights from research on C57BL/6J mice.
    Willott JF
    Hear Res; 2009 Jun; 252(1-2):89-99. PubMed ID: 19114100
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ameliorative effects of exposing DBA/2J mice to an augmented acoustic environment on histological changes in the cochlea and anteroventral cochlear nucleus.
    Willott JF; Bross LS; McFadden S
    J Assoc Res Otolaryngol; 2005 Sep; 6(3):234-43. PubMed ID: 15983726
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Exposure to an augmented acoustic environment alters auditory function in hearing-impaired DBA/2J mice.
    Turner JG; Willott JF
    Hear Res; 1998 Apr; 118(1-2):101-13. PubMed ID: 9606065
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of prolonged exposure to an augmented acoustic environment on the auditory system of middle-aged C57BL/6J mice: cochlear and central histology and sex differences.
    Willott JF; Bross L
    J Comp Neurol; 2004 May; 472(3):358-70. PubMed ID: 15065130
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The effect of an age-related hearing loss gene (Ahl) on noise-induced hearing loss and cochlear damage from low-frequency noise.
    Harding GW; Bohne BA; Vos JD
    Hear Res; 2005 Jun; 204(1-2):90-100. PubMed ID: 15925194
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effects of acoustic environment after traumatic noise exposure on hearing and outer hair cells.
    Tanaka C; Chen GD; Hu BH; Chi LH; Li M; Zheng G; Bielefeld EC; Jamesdaniel S; Coling D; Henderson D
    Hear Res; 2009 Apr; 250(1-2):10-8. PubMed ID: 19450428
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Genetic influences on susceptibility of the auditory system to aging and environmental factors.
    Li HS
    Scand Audiol Suppl; 1992; 36():1-39. PubMed ID: 1488615
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Prolonged exposure to an augmented acoustic environment ameliorates age-related auditory changes in C57BL/6J and DBA/2J mice.
    Willott JF; Turner JG
    Hear Res; 1999 Sep; 135(1-2):78-88. PubMed ID: 10491957
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ameliorative effects of an augmented acoustic environment on age-related hearing loss in middle-aged Fischer 344/NHsd rats.
    Tanaka C; Bielefeld EC; Chen GD; Li M; Henderson D
    Laryngoscope; 2009 Jul; 119(7):1374-9. PubMed ID: 19418535
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Acoustic experience alters the aged auditory system.
    Turner JG; Parrish JL; Zuiderveld L; Darr S; Hughes LF; Caspary DM; Idrezbegovic E; Canlon B
    Ear Hear; 2013; 34(2):151-9. PubMed ID: 23086424
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of exposure to an augmented acoustic environment on auditory function in mice: roles of hearing loss and age during treatment.
    Willott JF; Turner JG; Sundin VS
    Hear Res; 2000 Apr; 142(1-2):79-88. PubMed ID: 10748331
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The protective effect of conditioning on noise-induced hearing loss is frequency-dependent.
    Pourbakht A; Imani A
    Acta Med Iran; 2012; 50(10):664-9. PubMed ID: 23275293
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The BALB/c mouse as an animal model for progressive sensorineural hearing loss.
    Willott JF; Turner JG; Carlson S; Ding D; Seegers Bross L; Falls WA
    Hear Res; 1998 Jan; 115(1-2):162-74. PubMed ID: 9472745
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Noise induced reversible changes of cochlear ribbon synapses contribute to temporary hearing loss in mice.
    Shi L; Liu K; Wang H; Zhang Y; Hong Z; Wang M; Wang X; Jiang X; Yang S
    Acta Otolaryngol; 2015; 135(11):1093-102. PubMed ID: 26139555
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modulation of prepulse inhibition by an augmented acoustic environment in DBA/2J mice.
    Jeskey JE; Willott JF
    Behav Neurosci; 2000 Oct; 114(5):991-7. PubMed ID: 11085614
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Genetics of age-related hearing loss in mice. IV. Cochlear pathology and hearing loss in 25 BXD recombinant inbred mouse strains.
    Willott JF; Erway LC
    Hear Res; 1998 May; 119(1-2):27-36. PubMed ID: 9641316
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Attenuation of hearing loss in DBA/2J mice by anti-apoptotic treatment.
    Yang L; Zhang H; Han X; Zhao X; Hu F; Li P; Xie G; Gao L; Cheng L; Song X; Han F
    Hear Res; 2015 Sep; 327():109-16. PubMed ID: 26003529
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.