BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

751 related articles for article (PubMed ID: 16973331)

  • 1. Comparison of metabolic monitors in critically ill, ventilated patients.
    Singer P; Pogrebetsky I; Attal-Singer J; Cohen J
    Nutrition; 2006; 22(11-12):1077-86. PubMed ID: 16973331
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparison between the Datex-Ohmeda M-COVX metabolic monitor and the Deltatrac II in mechanically ventilated patients.
    McLellan S; Walsh T; Burdess A; Lee A
    Intensive Care Med; 2002 Jul; 28(7):870-6. PubMed ID: 12122524
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The effects of endotracheal suctioning on the accuracy of oxygen consumption and carbon dioxide production measurements and pulmonary mechanics calculated by a compact metabolic monitor.
    Briassoulis G; Briassoulis P; Michaeloudi E; Fitrolaki DM; Spanaki AM; Briassouli E
    Anesth Analg; 2009 Sep; 109(3):873-9. PubMed ID: 19690260
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Influence of different ventilator modes on Vo(2) and Vco(2) measurements using a compact metabolic monitor.
    Briassoulis G; Michaeloudi E; Fitrolaki DM; Spanaki AM; Briassouli E
    Nutrition; 2009; 25(11-12):1106-14. PubMed ID: 19502007
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Measuring energy expenditure in the intensive care unit: a comparison of indirect calorimetry by E-sCOVX and Quark RMR with Deltatrac II in mechanically ventilated critically ill patients.
    Rehal MS; Fiskaare E; Tjäder I; Norberg Å; Rooyackers O; Wernerman J
    Crit Care; 2016 Mar; 20():54. PubMed ID: 26951095
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Gas exchange measurement during pediatric mechanical ventilation--agreement between gas sampling at the airway and the ventilator exhaust.
    Smallwood CD; Mehta NM
    Clin Nutr; 2013 Dec; 32(6):988-92. PubMed ID: 23587734
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Predicting dead space ventilation in critically ill patients using clinically available data.
    Frankenfield DC; Alam S; Bekteshi E; Vender RL
    Crit Care Med; 2010 Jan; 38(1):288-91. PubMed ID: 19789453
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Assessment of the respiratory exchange ratio in mechanically ventilated patients by a standard anaesthetic gas analyser.
    Waldau T; Larsen VH; Parbst H; Bonde J
    Acta Anaesthesiol Scand; 2002 Nov; 46(10):1242-50. PubMed ID: 12421197
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Metabolic measurements during mechanical ventilation in the pediatric intensive care unit.
    Witte MK
    Respir Care Clin N Am; 1996 Dec; 2(4):573-86. PubMed ID: 9390897
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evaluation of three indirect calorimetry devices in mechanically ventilated patients: which device compares best with the Deltatrac II(®)? A prospective observational study.
    Graf S; Karsegard VL; Viatte V; Heidegger CP; Fleury Y; Pichard C; Genton L
    Clin Nutr; 2015 Feb; 34(1):60-5. PubMed ID: 24485773
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Predicted versus measured energy expenditure by continuous, online indirect calorimetry in ventilated, critically ill children during the early postinjury period.
    Vazquez Martinez JL; Martinez-Romillo PD; Diez Sebastian J; Ruza Tarrio F
    Pediatr Crit Care Med; 2004 Jan; 5(1):19-27. PubMed ID: 14697104
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Continuous blood gas monitoring using an in-dwelling optode method: comparison to intermittent arterial blood gas sampling in ECMO patients.
    Rais-Bahrami K; Rivera O; Mikesell GT; Short BL
    J Perinatol; 2002 Sep; 22(6):472-4. PubMed ID: 12168125
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Validation of the VO2000 calorimeter for measuring resting metabolic rate.
    Wahrlich V; Anjos LA; Going SB; Lohman TG
    Clin Nutr; 2006 Aug; 25(4):687-92. PubMed ID: 16698140
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantitative analysis of the relationship between sedation and resting energy expenditure in postoperative patients.
    Terao Y; Miura K; Saito M; Sekino M; Fukusaki M; Sumikawa K
    Crit Care Med; 2003 Mar; 31(3):830-3. PubMed ID: 12626992
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparing methods for measuring energy expenditure in the critically ill.
    Meyer R; Habibi P
    Nutrition; 2007 Mar; 23(3):281. PubMed ID: 17331701
    [No Abstract]   [Full Text] [Related]  

  • 16. Determination of metabolic monitor errors and precision under clinical conditions.
    Melendez JA; Veronesi M; Barrera R; Ferri E; Miodownik S
    Clin Nutr; 2001 Dec; 20(6):547-51. PubMed ID: 11884004
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Validation of a predictive method for an accurate assessment of resting energy expenditure in medical mechanically ventilated patients.
    Savard JF; Faisy C; Lerolle N; Guerot E; Diehl JL; Fagon JY
    Crit Care Med; 2008 Apr; 36(4):1175-83. PubMed ID: 18379244
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Adequate feeding and the usefulness of the respiratory quotient in critically ill children.
    Hulst JM; van Goudoever JB; Zimmermann LJ; Hop WC; Büller HA; Tibboel D; Joosten KF
    Nutrition; 2005 Feb; 21(2):192-8. PubMed ID: 15723748
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The effects of standard and branched chain amino acid enriched solutions on thermogenesis and energy expenditure in unconscious intensive care patients.
    Cankayali I; Demirag K; Kocabas S; Moral AR
    Clin Nutr; 2004 Apr; 23(2):257-63. PubMed ID: 15030966
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Metabolic monitoring in the intensive care unit: a comparison of the Medgraphics Ultima, Deltatrac II, and Douglas bag collection methods.
    Black C; Grocott MP; Singer M
    Br J Anaesth; 2015 Feb; 114(2):261-8. PubMed ID: 25354946
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 38.