These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
773 related articles for article (PubMed ID: 16973444)
1. Acrylamide: review of toxicity data and dose-response analyses for cancer and noncancer effects. Shipp A; Lawrence G; Gentry R; McDonald T; Bartow H; Bounds J; Macdonald N; Clewell H; Allen B; Van Landingham C Crit Rev Toxicol; 2006; 36(6-7):481-608. PubMed ID: 16973444 [TBL] [Abstract][Full Text] [Related]
2. A review of the toxicology of acrylamide. Exon JH J Toxicol Environ Health B Crit Rev; 2006; 9(5):397-412. PubMed ID: 17492525 [TBL] [Abstract][Full Text] [Related]
3. NTP-CERHR monograph on the potential human reproductive and developmental effects of acrylamide. National Toxicology Program NTP CERHR MON; 2005 Feb; (14):v-I-2, II-xi-166, III-1-74. PubMed ID: 15995732 [TBL] [Abstract][Full Text] [Related]
4. Evidence-based dose-response assessment for thyroid tumorigenesis from acrylamide. Dourson M; Hertzberg R; Allen B; Haber L; Parker A; Kroner O; Maier A; Kohrman M Regul Toxicol Pharmacol; 2008 Dec; 52(3):264-89. PubMed ID: 18775759 [TBL] [Abstract][Full Text] [Related]
5. Safety and nutritional assessment of GM plants and derived food and feed: the role of animal feeding trials. EFSA GMO Panel Working Group on Animal Feeding Trials Food Chem Toxicol; 2008 Mar; 46 Suppl 1():S2-70. PubMed ID: 18328408 [TBL] [Abstract][Full Text] [Related]
6. Amended final report on the safety assessment of polyacrylamide and acrylamide residues in cosmetics. Int J Toxicol; 2005; 24 Suppl 2():21-50. PubMed ID: 16154914 [TBL] [Abstract][Full Text] [Related]
7. Regulatory cancer risk assessment based on a quick estimate of a benchmark dose derived from the maximum tolerated dose. Gaylor DW; Swirsky Gold L Regul Toxicol Pharmacol; 1998 Dec; 28(3):222-5. PubMed ID: 10049793 [TBL] [Abstract][Full Text] [Related]
8. Ethyl methanesulfonate toxicity in Viracept--a comprehensive human risk assessment based on threshold data for genotoxicity. Müller L; Gocke E; Lavé T; Pfister T Toxicol Lett; 2009 Nov; 190(3):317-29. PubMed ID: 19443141 [TBL] [Abstract][Full Text] [Related]
9. Addressing nonlinearity in the exposure-response relationship for a genotoxic carcinogen: cancer potency estimates for ethylene oxide. Kirman CR; Sweeney LM; Teta MJ; Sielken RL; Valdez-Flores C; Albertini RJ; Gargas ML Risk Anal; 2004 Oct; 24(5):1165-83. PubMed ID: 15563286 [TBL] [Abstract][Full Text] [Related]
10. A cancer risk assessment of di(2-ethylhexyl)phthalate: application of the new U.S. EPA Risk Assessment Guidelines. Doull J; Cattley R; Elcombe C; Lake BG; Swenberg J; Wilkinson C; Williams G; van Gemert M Regul Toxicol Pharmacol; 1999 Jun; 29(3):327-57. PubMed ID: 10388618 [TBL] [Abstract][Full Text] [Related]
12. Comparison of PBTK model and biomarker based estimates of the internal dosimetry of acrylamide. DeWoskin RS; Sweeney LM; Teeguarden JG; Sams R; Vandenberg J Food Chem Toxicol; 2013 Aug; 58():506-21. PubMed ID: 23707562 [TBL] [Abstract][Full Text] [Related]
13. Derivation of a bisphenol A oral reference dose (RfD) and drinking-water equivalent concentration. Willhite CC; Ball GL; McLellan CJ J Toxicol Environ Health B Crit Rev; 2008 Feb; 11(2):69-146. PubMed ID: 18188738 [TBL] [Abstract][Full Text] [Related]
14. Procedures for calculating benchmark doses for health risk assessment. Gaylor D; Ryan L; Krewski D; Zhu Y Regul Toxicol Pharmacol; 1998 Oct; 28(2):150-64. PubMed ID: 9927564 [TBL] [Abstract][Full Text] [Related]
15. Cancer risk assessment for 1,3-butadiene: data integration opportunities. Preston RJ Chem Biol Interact; 2007 Mar; 166(1-3):150-5. PubMed ID: 16647696 [TBL] [Abstract][Full Text] [Related]
16. Chloroform mode of action: implications for cancer risk assessment. Golden RJ; Holm SE; Robinson DE; Julkunen PH; Reese EA Regul Toxicol Pharmacol; 1997 Oct; 26(2):142-55. PubMed ID: 9356278 [TBL] [Abstract][Full Text] [Related]
17. Dose-response modeling of in vivo genotoxicity data for use in risk assessment: some approaches illustrated by an analysis of acrylamide. Allen B; Zeiger E; Lawrence G; Friedman M; Shipp A Regul Toxicol Pharmacol; 2005 Feb; 41(1):6-27. PubMed ID: 15649824 [TBL] [Abstract][Full Text] [Related]
18. Using dietary exposure and physiologically based pharmacokinetic/pharmacodynamic modeling in human risk extrapolations for acrylamide toxicity. Doerge DR; Young JF; Chen JJ; Dinovi MJ; Henry SH J Agric Food Chem; 2008 Aug; 56(15):6031-8. PubMed ID: 18624435 [TBL] [Abstract][Full Text] [Related]
19. Critical review of dose-response options for F344 rat mammary tumors for acrylamide - additional insights based on mode of action. Maier A; Kohrman-Vincent M; Hertzberg R; Allen B; Haber LT; Dourson M Food Chem Toxicol; 2012 May; 50(5):1763-75. PubMed ID: 22366097 [TBL] [Abstract][Full Text] [Related]
20. Analysis of in vivo mutation data can inform cancer risk assessment. Moore MM; Heflich RH; Haber LT; Allen BC; Shipp AM; Kodell RL Regul Toxicol Pharmacol; 2008 Jul; 51(2):151-61. PubMed ID: 18321622 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]