These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
209 related articles for article (PubMed ID: 16973610)
1. Cysteine-scanning mutagenesis and disulfide mapping studies of the conserved domain of the twin-arginine translocase TatB component. Lee PA; Orriss GL; Buchanan G; Greene NP; Bond PJ; Punginelli C; Jack RL; Sansom MS; Berks BC; Palmer T J Biol Chem; 2006 Nov; 281(45):34072-85. PubMed ID: 16973610 [TBL] [Abstract][Full Text] [Related]
2. A signal sequence suppressor mutant that stabilizes an assembled state of the twin arginine translocase. Huang Q; Alcock F; Kneuper H; Deme JC; Rollauer SE; Lea SM; Berks BC; Palmer T Proc Natl Acad Sci U S A; 2017 Mar; 114(10):E1958-E1967. PubMed ID: 28223511 [TBL] [Abstract][Full Text] [Related]
3. Cysteine scanning mutagenesis and disulfide mapping studies of the TatA component of the bacterial twin arginine translocase. Greene NP; Porcelli I; Buchanan G; Hicks MG; Schermann SM; Palmer T; Berks BC J Biol Chem; 2007 Aug; 282(33):23937-45. PubMed ID: 17565984 [TBL] [Abstract][Full Text] [Related]
4. Cysteine scanning mutagenesis and topological mapping of the Escherichia coli twin-arginine translocase TatC Component. Punginelli C; Maldonado B; Grahl S; Jack R; Alami M; Schröder J; Berks BC; Palmer T J Bacteriol; 2007 Aug; 189(15):5482-94. PubMed ID: 17545291 [TBL] [Abstract][Full Text] [Related]
5. Surface-exposed domains of TatB involved in the structural and functional assembly of the Tat translocase in Fröbel J; Blümmel AS; Drepper F; Warscheid B; Müller M J Biol Chem; 2019 Sep; 294(38):13902-13914. PubMed ID: 31341014 [TBL] [Abstract][Full Text] [Related]
6. The Escherichia coli twin-arginine translocase: conserved residues of TatA and TatB family components involved in protein transport. Hicks MG; de Leeuw E; Porcelli I; Buchanan G; Berks BC; Palmer T FEBS Lett; 2003 Mar; 539(1-3):61-7. PubMed ID: 12650927 [TBL] [Abstract][Full Text] [Related]
7. Molecular dissection of TatC defines critical regions essential for protein transport and a TatB-TatC contact site. Kneuper H; Maldonado B; Jäger F; Krehenbrink M; Buchanan G; Keller R; Müller M; Berks BC; Palmer T Mol Microbiol; 2012 Sep; 85(5):945-61. PubMed ID: 22742417 [TBL] [Abstract][Full Text] [Related]
8. Solution structure of the TatB component of the twin-arginine translocation system. Zhang Y; Wang L; Hu Y; Jin C Biochim Biophys Acta; 2014 Jul; 1838(7):1881-8. PubMed ID: 24699374 [TBL] [Abstract][Full Text] [Related]
9. The TatC component of the twin-arginine protein translocase functions as an obligate oligomer. Cléon F; Habersetzer J; Alcock F; Kneuper H; Stansfeld PJ; Basit H; Wallace MI; Berks BC; Palmer T Mol Microbiol; 2015 Oct; 98(1):111-29. PubMed ID: 26112072 [TBL] [Abstract][Full Text] [Related]
10. The early mature part of bacterial twin-arginine translocation (Tat) precursor proteins contributes to TatBC receptor binding. Ulfig A; Freudl R J Biol Chem; 2018 May; 293(19):7281-7299. PubMed ID: 29593092 [TBL] [Abstract][Full Text] [Related]
11. Characterization of a TatA/TatB binding site on the TatC component of the Severi E; Bunoro Batista M; Lannoy A; Stansfeld PJ; Palmer T Microbiology (Reading); 2023 Feb; 169(2):. PubMed ID: 36790402 [TBL] [Abstract][Full Text] [Related]
12. Isolation and characterization of bifunctional Escherichia coli TatA mutant proteins that allow efficient tat-dependent protein translocation in the absence of TatB. Blaudeck N; Kreutzenbeck P; Müller M; Sprenger GA; Freudl R J Biol Chem; 2005 Feb; 280(5):3426-32. PubMed ID: 15557327 [TBL] [Abstract][Full Text] [Related]
13. Identification of protein-protein interactions between the TatB and TatC subunits of the twin-arginine translocase system and respiratory enzyme specific chaperones. Kuzniatsova L; Winstone TM; Turner RJ Biochim Biophys Acta; 2016 Apr; 1858(4):767-75. PubMed ID: 26826271 [TBL] [Abstract][Full Text] [Related]
14. TatB functions as an oligomeric binding site for folded Tat precursor proteins. Maurer C; Panahandeh S; Jungkamp AC; Moser M; Müller M Mol Biol Cell; 2010 Dec; 21(23):4151-61. PubMed ID: 20926683 [TBL] [Abstract][Full Text] [Related]
15. Substrate-triggered position switching of TatA and TatB during Tat transport in Habersetzer J; Moore K; Cherry J; Buchanan G; Stansfeld PJ; Palmer T Open Biol; 2017 Aug; 7(8):. PubMed ID: 28814647 [TBL] [Abstract][Full Text] [Related]
16. Truncation analysis of TatA and TatB defines the minimal functional units required for protein translocation. Lee PA; Buchanan G; Stanley NR; Berks BC; Palmer T J Bacteriol; 2002 Nov; 184(21):5871-9. PubMed ID: 12374820 [TBL] [Abstract][Full Text] [Related]
17. Escherichia coli TatA and TatB proteins have N-out, C-in topology in intact cells. Koch S; Fritsch MJ; Buchanan G; Palmer T J Biol Chem; 2012 Apr; 287(18):14420-31. PubMed ID: 22399293 [TBL] [Abstract][Full Text] [Related]
18. TatA and TatB generate a hydrophobic mismatch important for the function and assembly of the Tat translocon in Escherichia coli. Mehner-Breitfeld D; Ringel MT; Tichy DA; Endter LJ; Stroh KS; Lünsdorf H; Risselada HJ; Brüser T J Biol Chem; 2022 Sep; 298(9):102236. PubMed ID: 35809643 [TBL] [Abstract][Full Text] [Related]
19. The TatA component of the twin-arginine translocation system locally weakens the cytoplasmic membrane of Hou B; Heidrich ES; Mehner-Breitfeld D; Brüser T J Biol Chem; 2018 May; 293(20):7592-7605. PubMed ID: 29535185 [TBL] [Abstract][Full Text] [Related]
20. TatBC, TatB, and TatC form structurally autonomous units within the twin arginine protein transport system of Escherichia coli. Orriss GL; Tarry MJ; Ize B; Sargent F; Lea SM; Palmer T; Berks BC FEBS Lett; 2007 Aug; 581(21):4091-7. PubMed ID: 17686475 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]