BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

651 related articles for article (PubMed ID: 16977466)

  • 1. High activity of xylose reductase and xylitol dehydrogenase improves xylose fermentation by recombinant Saccharomyces cerevisiae.
    Karhumaa K; Fromanger R; Hahn-Hägerdal B; Gorwa-Grauslund MF
    Appl Microbiol Biotechnol; 2007 Jan; 73(5):1039-46. PubMed ID: 16977466
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Investigation of limiting metabolic steps in the utilization of xylose by recombinant Saccharomyces cerevisiae using metabolic engineering.
    Karhumaa K; Hahn-Hägerdal B; Gorwa-Grauslund MF
    Yeast; 2005 Apr; 22(5):359-68. PubMed ID: 15806613
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Engineering of a matched pair of xylose reductase and xylitol dehydrogenase for xylose fermentation by Saccharomyces cerevisiae.
    Krahulec S; Klimacek M; Nidetzky B
    Biotechnol J; 2009 May; 4(5):684-94. PubMed ID: 19452479
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of the reversal of coenzyme specificity by expression of mutated Pichia stipitis xylitol dehydrogenase in recombinant Saccharomyces cerevisiae.
    Hou J; Shen Y; Li XP; Bao XM
    Lett Appl Microbiol; 2007 Aug; 45(2):184-9. PubMed ID: 17651216
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Expression of protein engineered NADP+-dependent xylitol dehydrogenase increases ethanol production from xylose in recombinant Saccharomyces cerevisiae.
    Matsushika A; Watanabe S; Kodaki T; Makino K; Inoue H; Murakami K; Takimura O; Sawayama S
    Appl Microbiol Biotechnol; 2008 Nov; 81(2):243-55. PubMed ID: 18751695
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Endogenous NADPH-dependent aldose reductase activity influences product formation during xylose consumption in recombinant Saccharomyces cerevisiae.
    Träff-Bjerre KL; Jeppsson M; Hahn-Hägerdal B; Gorwa-Grauslund MF
    Yeast; 2004 Jan; 21(2):141-50. PubMed ID: 14755639
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Boost in bioethanol production using recombinant Saccharomyces cerevisiae with mutated strictly NADPH-dependent xylose reductase and NADP(+)-dependent xylitol dehydrogenase.
    Khattab SM; Saimura M; Kodaki T
    J Biotechnol; 2013 Jun; 165(3-4):153-6. PubMed ID: 23578809
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bioethanol production from xylose by recombinant Saccharomyces cerevisiae expressing xylose reductase, NADP(+)-dependent xylitol dehydrogenase, and xylulokinase.
    Matsushika A; Watanabe S; Kodaki T; Makino K; Sawayama S
    J Biosci Bioeng; 2008 Mar; 105(3):296-9. PubMed ID: 18397783
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Carbon fluxes of xylose-consuming Saccharomyces cerevisiae strains are affected differently by NADH and NADPH usage in HMF reduction.
    Almeida JR; Bertilsson M; Hahn-Hägerdal B; Lidén G; Gorwa-Grauslund MF
    Appl Microbiol Biotechnol; 2009 Sep; 84(4):751-61. PubMed ID: 19506862
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Saccharomyces cerevisiae engineered for xylose metabolism requires gluconeogenesis and the oxidative branch of the pentose phosphate pathway for aerobic xylose assimilation.
    Hector RE; Mertens JA; Bowman MJ; Nichols NN; Cotta MA; Hughes SR
    Yeast; 2011 Sep; 28(9):645-60. PubMed ID: 21809385
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of NADH-preferring xylose reductase expression on ethanol production from xylose in xylose-metabolizing recombinant Saccharomyces cerevisiae.
    Lee SH; Kodaki T; Park YC; Seo JH
    J Biotechnol; 2012 Apr; 158(4):184-91. PubMed ID: 21699927
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Feasibility of xylose fermentation by engineered Saccharomyces cerevisiae overexpressing endogenous aldose reductase (GRE3), xylitol dehydrogenase (XYL2), and xylulokinase (XYL3) from Scheffersomyces stipitis.
    Kim SR; Kwee NR; Kim H; Jin YS
    FEMS Yeast Res; 2013 May; 13(3):312-21. PubMed ID: 23398717
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ethanol production from xylose by recombinant Saccharomyces cerevisiae expressing protein engineered NADP+-dependent xylitol dehydrogenase.
    Watanabe S; Saleh AA; Pack SP; Annaluru N; Kodaki T; Makino K
    J Biotechnol; 2007 Jun; 130(3):316-9. PubMed ID: 17555838
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The expression of a Pichia stipitis xylose reductase mutant with higher K(M) for NADPH increases ethanol production from xylose in recombinant Saccharomyces cerevisiae.
    Jeppsson M; Bengtsson O; Franke K; Lee H; Hahn-Hägerdal B; Gorwa-Grauslund MF
    Biotechnol Bioeng; 2006 Mar; 93(4):665-73. PubMed ID: 16372361
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect on product formation in recombinant Saccharomyces cerevisiae strains expressing different levels of xylose metabolic genes.
    Bao X; Gao D; Qu Y; Wang Z; Walfridssion M; Hahn-Hagerbal B
    Chin J Biotechnol; 1997; 13(4):225-31. PubMed ID: 9631257
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The deletion of YLR042c improves ethanolic xylose fermentation by recombinant Saccharomyces cerevisiae.
    Parachin NS; Bengtsson O; Hahn-Hägerdal B; Gorwa-Grauslund MF
    Yeast; 2010 Sep; 27(9):741-51. PubMed ID: 20641017
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Construction of various mutants of xylose metabolizing enzymes for efficient conversion of biomass to ethanol.
    Saleh AA; Watanabe S; Annaluru N; Kodaki T; Makino K
    Nucleic Acids Symp Ser (Oxf); 2006; (50):279-80. PubMed ID: 17150926
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Co-expression of xylose reductase gene from Candida shehatae and endogenous xylitol dehydrogenase gene in Saccharomyces cerevisiae and the effect of metabolizing xylose to ethanol.
    Zhang J; Yang M; Tian S; Zhang Y; Yang X
    Prikl Biokhim Mikrobiol; 2010; 46(4):456-61. PubMed ID: 20873171
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Construction of a xylose-metabolizing yeast by genome integration of xylose isomerase gene and investigation of the effect of xylitol on fermentation.
    Tanino T; Hotta A; Ito T; Ishii J; Yamada R; Hasunuma T; Ogino C; Ohmura N; Ohshima T; Kondo A
    Appl Microbiol Biotechnol; 2010 Nov; 88(5):1215-21. PubMed ID: 20853104
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enhanced expression of genes involved in initial xylose metabolism and the oxidative pentose phosphate pathway in the improved xylose-utilizing Saccharomyces cerevisiae through evolutionary engineering.
    Zha J; Shen M; Hu M; Song H; Yuan Y
    J Ind Microbiol Biotechnol; 2014 Jan; 41(1):27-39. PubMed ID: 24113893
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 33.