These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 16977520)

  • 1. Phytotoxic effect of coal mine effluent on growth behavior, betabolic changes, and metal accumulation in rice plants (Oryza sativa L.) c.v. IR-36.
    Tiwari KK; Dwivedi S; Rai UN; Pandey AK; Chatterjee C; Singh NK; Tripathi RD
    Bull Environ Contam Toxicol; 2006 Aug; 77(2):194-202. PubMed ID: 16977520
    [No Abstract]   [Full Text] [Related]  

  • 2. Uptake of toxic heavy metals by rice (Oryza sativa L.) cultivated in the agricultural soil near Zhengzhou city, People's Republic of China.
    Liu WX; Shen LF; Liu JW; Wang YW; Li SR
    Bull Environ Contam Toxicol; 2007 Aug; 79(2):209-13. PubMed ID: 17639323
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Growth performance and biochemical responses of three rice (Oryza sativa L.) cultivars grown in fly-ash amended soil.
    Dwivedi S; Tripathi RD; Srivastava S; Mishra S; Shukla MK; Tiwari KK; Singh R; Rai UN
    Chemosphere; 2007 Feb; 67(1):140-51. PubMed ID: 17166555
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Studies on removal of metal ions and sulphate reduction using rice husk and Desulfotomaculum nigrificans with reference to remediation of acid mine drainage.
    Chockalingam E; Subramanian S
    Chemosphere; 2006 Feb; 62(5):699-708. PubMed ID: 16002121
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Heavy metal pollution induced due to coal mining effluent on surrounding aquatic ecosystem and its management through naturally occurring aquatic macrophytes.
    Mishra VK; Upadhyaya AR; Pandey SK; Tripathi BD
    Bioresour Technol; 2008 Mar; 99(5):930-6. PubMed ID: 17475484
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phytoremediation of coal mine spoil dump through integrated biotechnological approach.
    Juwarkar AA; Jambhulkar HP
    Bioresour Technol; 2008 Jul; 99(11):4732-41. PubMed ID: 17980580
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pollution level in distillery effluent and its phytotoxic effect on seed germination and early growth of maize and rice.
    Pandey SN; Nautiyal BD; Sharma CP
    J Environ Biol; 2008 Mar; 29(2):267-70. PubMed ID: 18831388
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Heavy metal accumulation in hot water tanks in a region experiencing coal waste pollution and comparison between regional water systems.
    Wigginton A; McSpirit S; Sims CD
    Bull Environ Contam Toxicol; 2007 Oct; 79(4):405-9. PubMed ID: 17846700
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Determination of metals by total reflection X-ray fluorescence and evaluation of toxicity of a river impacted by coal mining in the south of Brazil.
    Lattuada RM; Menezes CT; Pavei PT; Peralba MC; Dos Santos JH
    J Hazard Mater; 2009 Apr; 163(2-3):531-7. PubMed ID: 18692306
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Removal and accumulation of mercury by aquatic macrophytes from an open cast coal mine effluent.
    Mishra VK; Tripathi BD; Kim KH
    J Hazard Mater; 2009 Dec; 172(2-3):749-54. PubMed ID: 19665290
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rice paddies map arsenic problem.
    Lubick N
    Environ Sci Technol; 2007 Sep; 41(17):5928. PubMed ID: 17937259
    [No Abstract]   [Full Text] [Related]  

  • 12. Health risk from heavy metals via consumption of food crops in the vicinity of Dabaoshan mine, South China.
    Zhuang P; McBride MB; Xia H; Li N; Li Z
    Sci Total Environ; 2009 Feb; 407(5):1551-61. PubMed ID: 19068266
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Macroinvertebrate community response to acid mine drainage in rivers of the High Andes (Bolivia).
    Van Damme PA; Hamel C; Ayala A; Bervoets L
    Environ Pollut; 2008 Dec; 156(3):1061-8. PubMed ID: 18550237
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Relationship between proline and Hg2+-induced oxidative stress in a tolerant rice mutant.
    Wang F; Zeng B; Sun Z; Zhu C
    Arch Environ Contam Toxicol; 2009 May; 56(4):723-31. PubMed ID: 18787889
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phytoremediation of heavy-metal-polluted soils: screening for new accumulator plants in Angouran mine (Iran) and evaluation of removal ability.
    Chehregani A; Noori M; Yazdi HL
    Ecotoxicol Environ Saf; 2009 Jul; 72(5):1349-53. PubMed ID: 19386362
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High levels of heavy metals in rice (Oryza sativa L.) from a typical E-waste recycling area in southeast China and its potential risk to human health.
    Fu J; Zhou Q; Liu J; Liu W; Wang T; Zhang Q; Jiang G
    Chemosphere; 2008 Apr; 71(7):1269-75. PubMed ID: 18289635
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of amendment C:N ratio on plant richness, cover and metal content for acidic Pb and Zn mine tailings in Leadville, Colorado.
    Brown S; Devolder P; Compton H; Henry C
    Environ Pollut; 2007 Sep; 149(2):165-72. PubMed ID: 17368677
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effects of heavy metal mine drainage on population size structure, reproduction, and condition of western mosquitofish, Gambusia affinis.
    Franssen CM
    Arch Environ Contam Toxicol; 2009 Jul; 57(1):145-56. PubMed ID: 18846312
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Removal of heavy metal ions from wastewater by chemically modified plant wastes as adsorbents: a review.
    Wan Ngah WS; Hanafiah MA
    Bioresour Technol; 2008 Jul; 99(10):3935-48. PubMed ID: 17681755
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Heavy metal uptake by Euplotes mutabilis and its possible use in bioremediation of industrial wastewater.
    Rehman A; Shakoori FR; Shakoori AR
    Bull Environ Contam Toxicol; 2009 Jul; 83(1):130-5. PubMed ID: 19387521
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.