BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

210 related articles for article (PubMed ID: 16977655)

  • 1. An approach for a synthesis of asparagine-linked sialylglycopeptides having intact and homogeneous complex-type undecadisialyloligosaccharides.
    Yamamoto N; Takayanagi A; Yoshino A; Sakakibara T; Kajihara Y
    Chemistry; 2007; 13(2):613-25. PubMed ID: 16977655
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Solid-phase synthesis of sialylglycopeptides through selective esterification of the sialic acid residues of an Asn-linked complex-type sialyloligosaccharide.
    Yamamoto N; Ohmori Y; Sakakibara T; Sasaki K; Juneja LR; Kajihara Y
    Angew Chem Int Ed Engl; 2003 Jun; 42(22):2537-40. PubMed ID: 12800181
    [No Abstract]   [Full Text] [Related]  

  • 3. Efficient synthesis of complex glycopeptides based on unprotected oligosaccharides.
    Xue J; Guo Z
    J Org Chem; 2003 Apr; 68(7):2713-9. PubMed ID: 12662042
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Convenient synthesis of a sialylglycopeptide-thioester having an intact and homogeneous complex-type disialyl-oligosaccharide.
    Kajihara Y; Yoshihara A; Hirano K; Yamamoto N
    Carbohydr Res; 2006 Jul; 341(10):1333-40. PubMed ID: 16701588
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Efficient substitution reaction from cysteine to the serine residue of glycosylated polypeptide: repetitive peptide segment ligation strategy and the synthesis of glycosylated tetracontapeptide having acid labile sialyl-T(N) antigens.
    Okamoto R; Souma S; Kajihara Y
    J Org Chem; 2009 Mar; 74(6):2494-501. PubMed ID: 19236026
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Prompt chemoenzymatic synthesis of diverse complex-type oligosaccharides and its application to the solid-phase synthesis of a glycopeptide with Asn-linked sialyl-undeca- and asialo-nonasaccharides.
    Kajihara Y; Suzuki Y; Yamamoto N; Sasaki K; Sakakibara T; Juneja LR
    Chemistry; 2004 Feb; 10(4):971-85. PubMed ID: 14978824
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chemoselective ligation applied to the synthesis of a biantennary N-linked glycoform of CD52.
    Pratt MR; Bertozzi CR
    J Am Chem Soc; 2003 May; 125(20):6149-59. PubMed ID: 12785846
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Efficient and systematic synthesis of a small glycoconjugate library having human complex type oligosaccharides.
    Murase T; Tsuji T; Kajihara Y
    Carbohydr Res; 2009 Apr; 344(6):762-70. PubMed ID: 19285659
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synthesis of an Fmoc-Asn-heptasaccharide building block and its application to chemoenzymatic glycopeptide synthesis.
    Mezzato S; Unverzagt C
    Carbohydr Res; 2010 Jul; 345(10):1306-15. PubMed ID: 20417927
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chemical synthesis of a glycoprotein having an intact human complex-type sialyloligosaccharide under the Boc and Fmoc synthetic strategies.
    Yamamoto N; Tanabe Y; Okamoto R; Dawson PE; Kajihara Y
    J Am Chem Soc; 2008 Jan; 130(2):501-10. PubMed ID: 18085777
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synthesis and CD structural studies of CD52 peptides and glycopeptides.
    Swarts BM; Chang YC; Hu H; Guo Z
    Carbohydr Res; 2008 Nov; 343(17):2894-902. PubMed ID: 18789797
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synthesis of diverse asparagine linked oligosaccharides and synthesis of sialylglycopeptide on solid phase.
    Kajihara Y; Yamamoto N; Miyazaki T; Sato H
    Curr Med Chem; 2005; 12(5):527-50. PubMed ID: 15777211
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Solid-phase synthesis of CD52 glycopeptide and an efficient route to Asn-core pentasaccharide conjugate.
    Guo ZW; Nakahara Y; Nakahara Y; Ogawa T
    Bioorg Med Chem; 1997 Oct; 5(10):1917-24. PubMed ID: 9370036
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chemical synthesis of CD52 glycopeptides containing the acid-labile fucosyl linkage.
    Shao N; Xue J; Guo Z
    J Org Chem; 2003 Nov; 68(23):9003-11. PubMed ID: 14604374
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synthesis of glycopeptides.
    Kajihara Y; Okamoto R; Yamamoto N; Izumi M
    Methods Enzymol; 2010; 478():503-19. PubMed ID: 20816496
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chemical synthesis of homogeneous glycopeptides and glycoproteins.
    Kajihara Y; Yamamoto N; Okamoto R; Hirano K; Murase T
    Chem Rec; 2010 Apr; 10(2):80-100. PubMed ID: 20349507
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Novel N omega-xanthenyl-protecting groups for asparagine and glutamine, and applications to N alpha-9-fluorenylmethyloxycarbonyl (Fmoc) solid-phase peptide synthesis.
    Han Y; Solé NA; Tejbrant J; Barany G
    Pept Res; 1996; 9(4):166-73. PubMed ID: 8914163
    [TBL] [Abstract][Full Text] [Related]  

  • 18. 2-(N-Fmoc)-3-(N-Boc-N-methoxy)-diaminopropanoic acid, an amino acid for the synthesis of mimics of O-linked glycopeptides.
    Carrasco MR; Brown RT; Doan VH; Kandel SM; Lee FC
    Biopolymers; 2006; 84(4):414-20. PubMed ID: 16508952
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Preparation of glycosylated amino acids suitable for Fmoc solid-phase assembly.
    Cudic M; Burstein GD
    Methods Mol Biol; 2008; 494():187-208. PubMed ID: 18726575
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Construction of highly glycosylated mucin-type glycopeptides based on microwave-assisted solid-phase syntheses and enzymatic modifications.
    Matsushita T; Hinou H; Fumoto M; Kurogochi M; Fujitani N; Shimizu H; Nishimura S
    J Org Chem; 2006 Apr; 71(8):3051-63. PubMed ID: 16599599
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.