BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

256 related articles for article (PubMed ID: 16977682)

  • 1. Capillary separations enabling tissue proteomics-based biomarker discovery.
    Guo T; Lee CS; Wang W; DeVoe DL; Balgley BM
    Electrophoresis; 2006 Sep; 27(18):3523-32. PubMed ID: 16977682
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tissue proteomics using capillary isoelectric focusing-based multidimensional separations.
    Wang Y; Balgley BM; Lee CS
    Expert Rev Proteomics; 2005 Oct; 2(5):659-67. PubMed ID: 16209646
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Recent advances in capillary electrophoresis-based proteomic techniques for biomarker discovery.
    Fang X; Balgley BM; Lee CS
    Electrophoresis; 2009 Dec; 30(23):3998-4007. PubMed ID: 19960464
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Proteomics based on high-efficiency capillary separations.
    Shen Y; Smith RD
    Electrophoresis; 2002 Sep; 23(18):3106-24. PubMed ID: 12298083
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Proteome analysis of microdissected formalin-fixed and paraffin-embedded tissue specimens.
    Guo T; Wang W; Rudnick PA; Song T; Li J; Zhuang Z; Weil RJ; DeVoe DL; Lee CS; Balgley BM
    J Histochem Cytochem; 2007 Jul; 55(7):763-72. PubMed ID: 17409379
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Proteome analysis of microdissected tumor tissue using a capillary isoelectric focusing-based multidimensional separation platform coupled with ESI-tandem MS.
    Wang Y; Rudnick PA; Evans EL; Li J; Zhuang Z; Devoe DL; Lee CS; Balgley BM
    Anal Chem; 2005 Oct; 77(20):6549-56. PubMed ID: 16223239
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Proteome analysis of signaling cascades in human platelets.
    García A
    Blood Cells Mol Dis; 2006; 36(2):152-6. PubMed ID: 16487730
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Clinical proteomics: from biomarker discovery and cell signaling profiles to individualized personal therapy.
    Calvo KR; Liotta LA; Petricoin EF
    Biosci Rep; 2005; 25(1-2):107-25. PubMed ID: 16222423
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Introducing the CPL/MUW proteome database: interpretation of human liver and liver cancer proteome profiles by referring to isolated primary cells.
    Wimmer H; Gundacker NC; Griss J; Haudek VJ; Stättner S; Mohr T; Zwickl H; Paulitschke V; Baron DM; Trittner W; Kubicek M; Bayer E; Slany A; Gerner C
    Electrophoresis; 2009 Jun; 30(12):2076-89. PubMed ID: 19582709
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biomarker discovery for kidney diseases by mass spectrometry.
    Niwa T
    J Chromatogr B Analyt Technol Biomed Life Sci; 2008 Jul; 870(2):148-53. PubMed ID: 18024247
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Global and targeted quantitative proteomics for biomarker discovery.
    Veenstra TD
    J Chromatogr B Analyt Technol Biomed Life Sci; 2007 Feb; 847(1):3-11. PubMed ID: 17023222
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Automated image alignment for 2D gel electrophoresis in a high-throughput proteomics pipeline.
    Dowsey AW; Dunn MJ; Yang GZ
    Bioinformatics; 2008 Apr; 24(7):950-7. PubMed ID: 18310057
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Clinical perspectives of high-resolution mass spectrometry-based proteomics in neuroscience: exemplified in amyotrophic lateral sclerosis biomarker discovery research.
    Ekegren T; Hanrieder J; Bergquist J
    J Mass Spectrom; 2008 May; 43(5):559-71. PubMed ID: 18416436
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Gel-free mass spectrometry-based high throughput proteomics: tools for studying biological response of proteins and proteomes.
    Roe MR; Griffin TJ
    Proteomics; 2006 Sep; 6(17):4678-87. PubMed ID: 16888762
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Proteome analysis and tissue microarray for profiling protein markers associated with lymph node metastasis in colorectal cancer.
    Pei H; Zhu H; Zeng S; Li Y; Yang H; Shen L; Chen J; Zeng L; Fan J; Li X; Gong Y; Shen H
    J Proteome Res; 2007 Jul; 6(7):2495-501. PubMed ID: 17542627
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The current state of the art in high-resolution two-dimensional electrophoresis.
    Westermeier R; Schickle H
    Arch Physiol Biochem; 2009 Dec; 115(5):279-85. PubMed ID: 19874117
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantitative proteomics using formalin-fixed paraffin-embedded tissues of oral squamous cell carcinoma.
    Negishi A; Masuda M; Ono M; Honda K; Shitashige M; Satow R; Sakuma T; Kuwabara H; Nakanishi Y; Kanai Y; Omura K; Hirohashi S; Yamada T
    Cancer Sci; 2009 Sep; 100(9):1605-11. PubMed ID: 19522851
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Manual exfoliation of fresh tissue obviates the need for frozen sections for molecular profiling.
    Mojica WD; Rapkiewicz AV; Liotta LA; Espina V
    Cancer; 2005 Dec; 105(6):483-91. PubMed ID: 16015639
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High-throughput proteomics using Fourier transform ion cyclotron resonance mass spectrometry.
    Qian WJ; Camp DG; Smith RD
    Expert Rev Proteomics; 2004 Jun; 1(1):87-95. PubMed ID: 15966802
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Clinical cancer proteomics: promises and pitfalls.
    Alaiya A; Al-Mohanna M; Linder S
    J Proteome Res; 2005; 4(4):1213-22. PubMed ID: 16083271
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.