BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

338 related articles for article (PubMed ID: 16978045)

  • 1. Modeling of oxygen transport and cellular energetics explains observations on in vivo cardiac energy metabolism.
    Beard DA
    PLoS Comput Biol; 2006 Sep; 2(9):e107. PubMed ID: 16978045
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phosphate metabolite concentrations and ATP hydrolysis potential in normal and ischaemic hearts.
    Wu F; Zhang EY; Zhang J; Bache RJ; Beard DA
    J Physiol; 2008 Sep; 586(17):4193-208. PubMed ID: 18617566
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Theoretical modelling of some spatial and temporal aspects of the mitochondrion/creatine kinase/myofibril system in muscle.
    Kemp GJ; Manners DN; Clark JF; Bastin ME; Radda GK
    Mol Cell Biochem; 1998 Jul; 184(1-2):249-89. PubMed ID: 9746325
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Compartmentalized energy transfer in cardiomyocytes: use of mathematical modeling for analysis of in vivo regulation of respiration.
    Aliev MK; Saks VA
    Biophys J; 1997 Jul; 73(1):428-45. PubMed ID: 9199806
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A biophysical model of the mitochondrial respiratory system and oxidative phosphorylation.
    Beard DA
    PLoS Comput Biol; 2005 Sep; 1(4):e36. PubMed ID: 16163394
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A simulation study on the constancy of cardiac energy metabolites during workload transition.
    Saito R; Takeuchi A; Himeno Y; Inagaki N; Matsuoka S
    J Physiol; 2016 Dec; 594(23):6929-6945. PubMed ID: 27530892
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cytosolic adenylates and adenosine release in perfused working heart. Comparison of whole tissue with cytosolic non-aqueous fractionation analyses.
    Bünger R; Soboll S
    Eur J Biochem; 1986 Aug; 159(1):203-13. PubMed ID: 3091368
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Role of the creatine/phosphocreatine system in the regulation of mitochondrial respiration.
    Saks VA; Kongas O; Vendelin M; Kay L
    Acta Physiol Scand; 2000 Apr; 168(4):635-41. PubMed ID: 10759600
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Regulation of metabolism: the work-to-rest transition in skeletal muscle.
    Wilson DF
    Am J Physiol Endocrinol Metab; 2016 Apr; 310(8):E633-E642. PubMed ID: 26837809
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Respiratory control and the integration of heart high-energy phosphate metabolism by mitochondrial creatine kinase.
    Jacobus WE
    Annu Rev Physiol; 1985; 47():707-25. PubMed ID: 3888084
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Parallel activation of mitochondrial oxidative metabolism with increased cardiac energy expenditure is not dependent on fatty acid oxidation in pigs.
    Zhou L; Cabrera ME; Huang H; Yuan CL; Monika DK; Sharma N; Bian F; Stanley WC
    J Physiol; 2007 Mar; 579(Pt 3):811-21. PubMed ID: 17185335
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Is there the creatine kinase equilibrium in working heart cells?
    Saks VA; Aliev MK
    Biochem Biophys Res Commun; 1996 Oct; 227(2):360-7. PubMed ID: 8878521
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Metabolic control of contractile performance in isolated perfused rat heart. Analysis of experimental data by reaction:diffusion mathematical model.
    Dos Santos P; Aliev MK; Diolez P; Duclos F; Besse P; Bonoron-Adèle S; Sikk P; Canioni P; Saks VA
    J Mol Cell Cardiol; 2000 Sep; 32(9):1703-34. PubMed ID: 10966833
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The dynamic regulation of myocardial oxidative phosphorylation: analysis of the response time of oxygen consumption.
    van Beek JH; Tian X; Zuurbier CJ; de Groot B; van Echteld CJ; Eijgelshoven MH; Hak JB
    Mol Cell Biochem; 1998 Jul; 184(1-2):321-44. PubMed ID: 9746328
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Analyzing the functional properties of the creatine kinase system with multiscale 'sloppy' modeling.
    Hettling H; van Beek JH
    PLoS Comput Biol; 2011 Aug; 7(8):e1002130. PubMed ID: 21912519
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Roles of the creatine kinase system and myoglobin in maintaining energetic state in the working heart.
    Wu F; Beard DA
    BMC Syst Biol; 2009 Feb; 3():22. PubMed ID: 19228404
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mitochondrial cytochrome c oxidase: mechanism of action and role in regulating oxidative phosphorylation.
    Wilson DF; Vinogradov SA
    J Appl Physiol (1985); 2014 Dec; 117(12):1431-9. PubMed ID: 25324518
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Metabolic compartmentation and substrate channelling in muscle cells. Role of coupled creatine kinases in in vivo regulation of cellular respiration--a synthesis.
    Saks VA; Khuchua ZA; Vasilyeva EV; Belikova OYu ; Kuznetsov AV
    Mol Cell Biochem; 1994; 133-134():155-92. PubMed ID: 7808453
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The role of Ca2+ in coupling cardiac metabolism with regulation of contraction: in silico modeling.
    Yaniv Y; Stanley WC; Saidel GM; Cabrera ME; Landesberg A
    Ann N Y Acad Sci; 2008 Mar; 1123():69-78. PubMed ID: 18375579
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Oxygen dependence of energy state and cardiac work in the perfused rat heart.
    Ito K; Nioka S; Chance B
    Adv Exp Med Biol; 1990; 277():449-57. PubMed ID: 1965760
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.