These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

335 related articles for article (PubMed ID: 16978045)

  • 1. Modeling of oxygen transport and cellular energetics explains observations on in vivo cardiac energy metabolism.
    Beard DA
    PLoS Comput Biol; 2006 Sep; 2(9):e107. PubMed ID: 16978045
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phosphate metabolite concentrations and ATP hydrolysis potential in normal and ischaemic hearts.
    Wu F; Zhang EY; Zhang J; Bache RJ; Beard DA
    J Physiol; 2008 Sep; 586(17):4193-208. PubMed ID: 18617566
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Theoretical modelling of some spatial and temporal aspects of the mitochondrion/creatine kinase/myofibril system in muscle.
    Kemp GJ; Manners DN; Clark JF; Bastin ME; Radda GK
    Mol Cell Biochem; 1998 Jul; 184(1-2):249-89. PubMed ID: 9746325
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Compartmentalized energy transfer in cardiomyocytes: use of mathematical modeling for analysis of in vivo regulation of respiration.
    Aliev MK; Saks VA
    Biophys J; 1997 Jul; 73(1):428-45. PubMed ID: 9199806
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A biophysical model of the mitochondrial respiratory system and oxidative phosphorylation.
    Beard DA
    PLoS Comput Biol; 2005 Sep; 1(4):e36. PubMed ID: 16163394
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A simulation study on the constancy of cardiac energy metabolites during workload transition.
    Saito R; Takeuchi A; Himeno Y; Inagaki N; Matsuoka S
    J Physiol; 2016 Dec; 594(23):6929-6945. PubMed ID: 27530892
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cytosolic adenylates and adenosine release in perfused working heart. Comparison of whole tissue with cytosolic non-aqueous fractionation analyses.
    Bünger R; Soboll S
    Eur J Biochem; 1986 Aug; 159(1):203-13. PubMed ID: 3091368
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Role of the creatine/phosphocreatine system in the regulation of mitochondrial respiration.
    Saks VA; Kongas O; Vendelin M; Kay L
    Acta Physiol Scand; 2000 Apr; 168(4):635-41. PubMed ID: 10759600
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Regulation of metabolism: the work-to-rest transition in skeletal muscle.
    Wilson DF
    Am J Physiol Endocrinol Metab; 2016 Apr; 310(8):E633-E642. PubMed ID: 26837809
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Respiratory control and the integration of heart high-energy phosphate metabolism by mitochondrial creatine kinase.
    Jacobus WE
    Annu Rev Physiol; 1985; 47():707-25. PubMed ID: 3888084
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Parallel activation of mitochondrial oxidative metabolism with increased cardiac energy expenditure is not dependent on fatty acid oxidation in pigs.
    Zhou L; Cabrera ME; Huang H; Yuan CL; Monika DK; Sharma N; Bian F; Stanley WC
    J Physiol; 2007 Mar; 579(Pt 3):811-21. PubMed ID: 17185335
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Is there the creatine kinase equilibrium in working heart cells?
    Saks VA; Aliev MK
    Biochem Biophys Res Commun; 1996 Oct; 227(2):360-7. PubMed ID: 8878521
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Metabolic control of contractile performance in isolated perfused rat heart. Analysis of experimental data by reaction:diffusion mathematical model.
    Dos Santos P; Aliev MK; Diolez P; Duclos F; Besse P; Bonoron-Adèle S; Sikk P; Canioni P; Saks VA
    J Mol Cell Cardiol; 2000 Sep; 32(9):1703-34. PubMed ID: 10966833
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The dynamic regulation of myocardial oxidative phosphorylation: analysis of the response time of oxygen consumption.
    van Beek JH; Tian X; Zuurbier CJ; de Groot B; van Echteld CJ; Eijgelshoven MH; Hak JB
    Mol Cell Biochem; 1998 Jul; 184(1-2):321-44. PubMed ID: 9746328
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Analyzing the functional properties of the creatine kinase system with multiscale 'sloppy' modeling.
    Hettling H; van Beek JH
    PLoS Comput Biol; 2011 Aug; 7(8):e1002130. PubMed ID: 21912519
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Roles of the creatine kinase system and myoglobin in maintaining energetic state in the working heart.
    Wu F; Beard DA
    BMC Syst Biol; 2009 Feb; 3():22. PubMed ID: 19228404
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mitochondrial cytochrome c oxidase: mechanism of action and role in regulating oxidative phosphorylation.
    Wilson DF; Vinogradov SA
    J Appl Physiol (1985); 2014 Dec; 117(12):1431-9. PubMed ID: 25324518
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Metabolic compartmentation and substrate channelling in muscle cells. Role of coupled creatine kinases in in vivo regulation of cellular respiration--a synthesis.
    Saks VA; Khuchua ZA; Vasilyeva EV; Belikova OYu ; Kuznetsov AV
    Mol Cell Biochem; 1994; 133-134():155-92. PubMed ID: 7808453
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The role of Ca2+ in coupling cardiac metabolism with regulation of contraction: in silico modeling.
    Yaniv Y; Stanley WC; Saidel GM; Cabrera ME; Landesberg A
    Ann N Y Acad Sci; 2008 Mar; 1123():69-78. PubMed ID: 18375579
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Oxygen dependence of energy state and cardiac work in the perfused rat heart.
    Ito K; Nioka S; Chance B
    Adv Exp Med Biol; 1990; 277():449-57. PubMed ID: 1965760
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.