BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 16978353)

  • 1. Disappearance of oxytetracycline resistance genes in aquatic systems.
    Engemann CA; Adams L; Knapp CW; Graham DW
    FEMS Microbiol Lett; 2006 Oct; 263(2):176-82. PubMed ID: 16978353
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Abundance of six tetracycline resistance genes in wastewater lagoons at cattle feedlots with different antibiotic use strategies.
    Peak N; Knapp CW; Yang RK; Hanfelt MM; Smith MS; Aga DS; Graham DW
    Environ Microbiol; 2007 Jan; 9(1):143-51. PubMed ID: 17227419
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Accumulation of tetracycline resistance genes in aquatic biofilms due to periodic waste loadings from swine lagoons.
    Zhang W; Sturm BS; Knapp CW; Graham DW
    Environ Sci Technol; 2009 Oct; 43(20):7643-50. PubMed ID: 19921873
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fate of tetracycline resistance genes in aquatic systems: migration from the water column to peripheral biofilms.
    Engemann CA; Keen PL; Knapp CW; Hall KJ; Graham DW
    Environ Sci Technol; 2008 Jul; 42(14):5131-6. PubMed ID: 18754359
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantification of tetracycline resistance genes in feedlot lagoons by real-time PCR.
    Smith MS; Yang RK; Knapp CW; Niu Y; Peak N; Hanfelt MM; Galland JC; Graham DW
    Appl Environ Microbiol; 2004 Dec; 70(12):7372-7. PubMed ID: 15574938
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tetracycline residues and tetracycline resistance genes in groundwater impacted by swine production facilities.
    Mackie RI; Koike S; Krapac I; Chee-Sanford J; Maxwell S; Aminov RI
    Anim Biotechnol; 2006; 17(2):157-76. PubMed ID: 17127527
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Abundance and distribution of tetracycline resistance genes and mobile elements in an oxytetracycline production wastewater treatment system.
    Liu M; Zhang Y; Yang M; Tian Z; Ren L; Zhang S
    Environ Sci Technol; 2012 Jul; 46(14):7551-7. PubMed ID: 22709269
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tetracycline resistance genes in activated sludge wastewater treatment plants.
    Auerbach EA; Seyfried EE; McMahon KD
    Water Res; 2007 Mar; 41(5):1143-51. PubMed ID: 17239919
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect from low-level exposure of oxytetracycline on abundance of tetracycline resistance genes in arable soils.
    Shentu JL; Zhang K; Shen DS; Wang MZ; Feng HJ
    Environ Sci Pollut Res Int; 2015 Sep; 22(17):13102-10. PubMed ID: 25925140
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cow excrements enhance the occurrence of tetracycline resistance genes in soil regardless of their oxytetracycline content.
    Kyselková M; Jirout J; Chroňáková A; Vrchotová N; Bradley R; Schmitt H; Elhottová D
    Chemosphere; 2013 Nov; 93(10):2413-8. PubMed ID: 24053942
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Occurrence of tetracycline resistance genes in aquaculture facilities with varying use of oxytetracycline.
    Seyfried EE; Newton RJ; Rubert KF; Pedersen JA; McMahon KD
    Microb Ecol; 2010 May; 59(4):799-807. PubMed ID: 20217406
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Indirect evidence of transposon-mediated selection of antibiotic resistance genes in aquatic systems at low-level oxytetracycline exposures.
    Knapp CW; Engemann CA; Hanson ML; Keen PL; Hall KJ; Graham DW
    Environ Sci Technol; 2008 Jul; 42(14):5348-53. PubMed ID: 18754392
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecular determination of oxytetracycline-resistant bacteria and their resistance genes from mariculture environments of China.
    Dang H; Zhang X; Song L; Chang Y; Yang G
    J Appl Microbiol; 2007 Dec; 103(6):2580-92. PubMed ID: 18045442
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evidence for plasmid-mediated tetracycline resistance in Paenibacillus larvae, the causal agent of American Foulbrood (AFB) disease in honeybees.
    Alippi AM; López AC; Reynaldi FJ; Grasso DH; Aguilar OM
    Vet Microbiol; 2007 Dec; 125(3-4):290-303. PubMed ID: 17601687
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The tetracycline resistance determinant Tet 39 and the sulphonamide resistance gene sulII are common among resistant Acinetobacter spp. isolated from integrated fish farms in Thailand.
    Agersø Y; Petersen A
    J Antimicrob Chemother; 2007 Jan; 59(1):23-7. PubMed ID: 17095527
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of oxytetracycline on archaeal community, and tetracycline resistance genes in anaerobic co-digestion of pig manure and wheat straw.
    Wang X; Pan H; Gu J; Qian X; Gao H; Qin Q
    Environ Technol; 2016 Dec; 37(24):3177-85. PubMed ID: 27115735
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular characterizations of oxytetracycline resistant bacteria and their resistance genes from mariculture waters of China.
    Dang H; Zhang X; Song L; Chang Y; Yang G
    Mar Pollut Bull; 2006 Nov; 52(11):1494-503. PubMed ID: 16828121
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of river landscape on the sediment concentrations of antibiotics and corresponding antibiotic resistance genes (ARG).
    Pei R; Kim SC; Carlson KH; Pruden A
    Water Res; 2006 Jul; 40(12):2427-35. PubMed ID: 16753197
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Diversity of tetracycline resistance genes in bacteria from aquaculture sources in Australia.
    Akinbowale OL; Peng H; Barton MD
    J Appl Microbiol; 2007 Nov; 103(5):2016-25. PubMed ID: 17953612
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Differential fate of erythromycin and beta-lactam resistance genes from swine lagoon waste under different aquatic conditions.
    Knapp CW; Zhang W; Sturm BS; Graham DW
    Environ Pollut; 2010 May; 158(5):1506-12. PubMed ID: 20053492
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.