BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 1697857)

  • 21. Ca2+ channel agonists enhance thyrotropin-releasing hormone-induced inositol phosphates and prolactin secretion.
    Pachter JA; Law GJ; Dannies PS
    Eur J Pharmacol; 1991 Apr; 195(3):373-9. PubMed ID: 1714395
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Thyrotropin-releasing hormone and epidermal growth factor stimulate prolactin synthesis by a pathway(s) that differs from that used by phorbol esters: dissociation of actions by calcium dependency and additivity.
    Ramsdell JS; Tashjian AH
    Endocrinology; 1985 Nov; 117(5):2050-60. PubMed ID: 3930223
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The D2 receptor: blocked transcription in GH3 cells and cellular pathways employed by D2A to regulate prolactin promoter activity.
    Fischberg DJ; Bancroft C
    Mol Cell Endocrinol; 1995 Jun; 111(2):129-37. PubMed ID: 7556874
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A role for the mitogen-activated protein kinase in mediating the ability of thyrotropin-releasing hormone to stimulate the prolactin promoter.
    Wang YH; Maurer RA
    Mol Endocrinol; 1999 Jul; 13(7):1094-104. PubMed ID: 10406461
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Inhibition of L-type calcium-channel activity by thapsigargin and 2,5-t-butylhydroquinone, but not by cyclopiazonic acid.
    Nelson EJ; Li CC; Bangalore R; Benson T; Kass RS; Hinkle PM
    Biochem J; 1994 Aug; 302 ( Pt 1)(Pt 1):147-54. PubMed ID: 7520693
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Voltage-dependent calcium channels in pituitary cells in culture. II. Participation in thyrotropin-releasing hormone action on prolactin release.
    Tan KN; Tashjian AH
    J Biol Chem; 1984 Jan; 259(1):427-34. PubMed ID: 6323410
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Thapsigargin, but not caffeine, blocks the ability of thyrotropin-releasing hormone to release Ca2+ from an intracellular store in GH4C1 pituitary cells.
    Law GJ; Pachter JA; Thastrup O; Hanley MR; Dannies PS
    Biochem J; 1990 Apr; 267(2):359-64. PubMed ID: 1692207
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Role of calcium and sodium ions in the inhibitory control of baseline and stimulated prolactin release.
    Lafond J; Collu R
    Endocrinology; 1986 Nov; 119(5):2012-7. PubMed ID: 2429829
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Evidence that TRH controls prolactin release from rat lactotrophs by stimulating a calcium influx.
    Guérineau NC; Lledo PM; Verrier D; Israel JM
    Cell Biol Toxicol; 1994 Dec; 10(5-6):311-6. PubMed ID: 7535175
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Proximal upstream flanking sequences direct calcium regulation of the rat prolactin gene.
    Jackson AE; Bancroft C
    Mol Endocrinol; 1988 Nov; 2(11):1139-44. PubMed ID: 2464750
    [TBL] [Abstract][Full Text] [Related]  

  • 31. U-73122, an aminosteroid phospholipase C antagonist, noncompetitively inhibits thyrotropin-releasing hormone effects in GH3 rat pituitary cells.
    Smallridge RC; Kiang JG; Gist ID; Fein HG; Galloway RJ
    Endocrinology; 1992 Oct; 131(4):1883-8. PubMed ID: 1396332
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Selective antagonism of calcium channel activators by fluspirilene.
    Kenny BA; Fraser S; Kilpatrick AT; Spedding M
    Br J Pharmacol; 1990 Jun; 100(2):211-6. PubMed ID: 1696149
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Neuropeptide-Y enhances luteinizing hormone (LH)-releasing hormone-induced LH release and elevations in cytosolic Ca2+ in rat anterior pituitary cells: evidence for involvement of extracellular Ca2+ influx through voltage-sensitive channels.
    Crowley WR; Shah GV; Carroll BL; Kennedy D; Dockter ME; Kalra SP
    Endocrinology; 1990 Sep; 127(3):1487-94. PubMed ID: 1696888
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Ca2+ channel modulation and kinase-C activation in a pituitary cell line: induction of immediate early genes and inhibition of proliferation.
    Duchemin AM; Enyeart JA; Biagi BA; Foster DN; Mlinar B; Enyeart JJ
    Mol Endocrinol; 1992 Apr; 6(4):563-71. PubMed ID: 1374838
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Comparison of the forms of the dopamine D2 receptor expressed in GH4C1 cells.
    Burris TP; Freeman ME
    Proc Soc Exp Biol Med; 1994 Mar; 205(3):226-35. PubMed ID: 8171043
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Regulation of prolactin, thyrotropin subunit, and gonadotropin subunit gene expression by pulsatile or continuous calcium signals.
    Haisenleder DJ; Yasin M; Yasin A; Marshall JC
    Endocrinology; 1993 Nov; 133(5):2055-61. PubMed ID: 8404653
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Control of Ca2+ entry into rat lactotrophs by thyrotrophin-releasing hormone.
    Carew MA; Mason WT
    J Physiol; 1995 Jul; 486 ( Pt 2)(Pt 2):349-60. PubMed ID: 7473202
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Role of specific protein kinase C isozymes in mediating epidermal growth factor, thyrotropin-releasing hormone, and phorbol ester regulation of the rat prolactin promoter in GH4/GH4C1 pituitary cells.
    Pickett CA; Manning N; Akita Y; Gutierrez-Hartmann A
    Mol Endocrinol; 2002 Dec; 16(12):2840-52. PubMed ID: 12456804
    [TBL] [Abstract][Full Text] [Related]  

  • 39. TRH and BAY K 8644 synergistically stimulate prolactin release but not 45Ca2+ uptake.
    Pachter JA; Law GJ; Dannies PS
    Am J Physiol; 1988 Nov; 255(5 Pt 1):C633-40. PubMed ID: 2461093
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Medium hyperosmolarity depresses thyrotropin-releasing hormone-induced Ca2+ influx and prolactin secretion in GH4C1 cells.
    Sato N; Wang X; Greer MA
    Mol Cell Endocrinol; 1991 May; 77(1-3):193-8. PubMed ID: 1726154
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.