BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

87 related articles for article (PubMed ID: 16978647)

  • 1. In vitro evolution of a hyperstable Gbeta1 variant.
    Wunderlich M; Schmid FX
    J Mol Biol; 2006 Oct; 363(2):545-57. PubMed ID: 16978647
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dimer formation of a stabilized Gbeta1 variant: a structural and energetic analysis.
    Thoms S; Max KE; Wunderlich M; Jacso T; Lilie H; Reif B; Heinemann U; Schmid FX
    J Mol Biol; 2009 Sep; 391(5):918-32. PubMed ID: 19527728
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Stabilization of the cold shock protein CspB from Bacillus subtilis by evolutionary optimization of Coulombic interactions.
    Wunderlich M; Martin A; Schmid FX
    J Mol Biol; 2005 Apr; 347(5):1063-76. PubMed ID: 15784264
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evolutionary protein stabilization in comparison with computational design.
    Wunderlich M; Martin A; Staab CA; Schmid FX
    J Mol Biol; 2005 Sep; 351(5):1160-8. PubMed ID: 16051264
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Increased folding stability of TEM-1 beta-lactamase by in vitro selection.
    Kather I; Jakob RP; Dobbek H; Schmid FX
    J Mol Biol; 2008 Oct; 383(1):238-51. PubMed ID: 18706424
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In-vitro selection of highly stabilized protein variants with optimized surface.
    Martin A; Sieber V; Schmid FX
    J Mol Biol; 2001 Jun; 309(3):717-26. PubMed ID: 11397091
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A stable disulfide-free gene-3-protein of phage fd generated by in vitro evolution.
    Kather I; Bippes CA; Schmid FX
    J Mol Biol; 2005 Dec; 354(3):666-78. PubMed ID: 16259997
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optimization of the gbeta1 domain by computational design and by in vitro evolution: structural and energetic basis of stabilization.
    Wunderlich M; Max KE; Roske Y; Mueller U; Heinemann U; Schmid FX
    J Mol Biol; 2007 Oct; 373(3):775-84. PubMed ID: 17868696
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optimized variants of the cold shock protein from in vitro selection: structural basis of their high thermostability.
    Max KE; Wunderlich M; Roske Y; Schmid FX; Heinemann U
    J Mol Biol; 2007 Jun; 369(4):1087-97. PubMed ID: 17481655
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Combined use of experimental and computational screens to characterize protein stability.
    Barakat NH; Barakat NH; Love JJ
    Protein Eng Des Sel; 2010 Oct; 23(10):799-807. PubMed ID: 20805093
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Changing the determinants of protein stability from covalent to non-covalent interactions by in vitro evolution: a structural and energetic analysis.
    Kather I; Jakob R; Dobbek H; Schmid FX
    J Mol Biol; 2008 Sep; 381(4):1040-54. PubMed ID: 18621056
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Remarkable stabilization of a psychrotrophic RNase HI by a combination of thermostabilizing mutations identified by the suppressor mutation method.
    Tadokoro T; Matsushita K; Abe Y; Rohman MS; Koga Y; Takano K; Kanaya S
    Biochemistry; 2008 Aug; 47(31):8040-7. PubMed ID: 18616283
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A kinetic approach to determining the conformational stability of a protein that dimerizes after folding.
    Hoffmann-Thoms S; Schmid FX
    Biochemistry; 2012 May; 51(18):3948-56. PubMed ID: 22509974
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Exploiting elements of transcriptional machinery to enhance protein stability.
    Barakat NH; Barakat NH; Carmody LJ; Love JJ
    J Mol Biol; 2007 Feb; 366(1):103-16. PubMed ID: 17157872
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Construction of stabilized proteins by combinatorial consensus mutagenesis.
    Amin N; Liu AD; Ramer S; Aehle W; Meijer D; Metin M; Wong S; Gualfetti P; Schellenberger V
    Protein Eng Des Sel; 2004 Nov; 17(11):787-93. PubMed ID: 15574484
    [TBL] [Abstract][Full Text] [Related]  

  • 16. NMR-detected conformational exchange observed in a computationally designed variant of protein Gbeta1.
    Crowhurst KA; Mayo SL
    Protein Eng Des Sel; 2008 Sep; 21(9):577-87. PubMed ID: 18586670
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structural basis of selection and thermostability of laboratory evolved Bacillus subtilis lipase.
    Acharya P; Rajakumara E; Sankaranarayanan R; Rao NM
    J Mol Biol; 2004 Aug; 341(5):1271-81. PubMed ID: 15321721
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Extreme temperature tolerance of a hyperthermophilic protein coupled to residual structure in the unfolded state.
    Wallgren M; Adén J; Pylypenko O; Mikaelsson T; Johansson LB; Rak A; Wolf-Watz M
    J Mol Biol; 2008 Jun; 379(4):845-58. PubMed ID: 18471828
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Thermostable variants of subtilisin selected by temperature-gradient gel electrophoresis.
    Sättler A; Kanka S; Maurer KH; Riesner D
    Electrophoresis; 1996 Apr; 17(4):784-92. PubMed ID: 8738345
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evolutionary stabilization of the gene-3-protein of phage fd reveals the principles that govern the thermodynamic stability of two-domain proteins.
    Martin A; Schmid FX
    J Mol Biol; 2003 May; 328(4):863-75. PubMed ID: 12729760
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.