These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 16979075)

  • 21. Computer-aided diagnostic scheme for distinction between benign and malignant nodules in thoracic low-dose CT by use of massive training artificial neural network.
    Suzuki K; Li F; Sone S; Doi K
    IEEE Trans Med Imaging; 2005 Sep; 24(9):1138-50. PubMed ID: 16156352
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Pulmonary nodules at chest CT: effect of computer-aided diagnosis on radiologists' detection performance.
    Awai K; Murao K; Ozawa A; Komi M; Hayakawa H; Hori S; Nishimura Y
    Radiology; 2004 Feb; 230(2):347-52. PubMed ID: 14752180
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Minimum perceivable size difference: how well can radiologists visually detect a change in lung nodule size from CT images?
    Solomon J; Ebner L; Christe A; Peters A; Munz J; Löbelenz L; Klaus J; Richards T; Samei E; Roos JE
    Eur Radiol; 2021 Apr; 31(4):1947-1955. PubMed ID: 32997175
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The Lung Image Database Consortium (LIDC): ensuring the integrity of expert-defined "truth".
    Armato SG; Roberts RY; McNitt-Gray MF; Meyer CR; Reeves AP; McLennan G; Engelmann RM; Bland PH; Aberle DR; Kazerooni EA; MacMahon H; van Beek EJ; Yankelevitz D; Croft BY; Clarke LP
    Acad Radiol; 2007 Dec; 14(12):1455-63. PubMed ID: 18035275
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Computer-aided detection of solid lung nodules in lossy compressed multidetector computed tomography chest exams.
    Raffy P; Gaudeau Y; Miller DP; Moureaux JM; Castellino RA
    Acad Radiol; 2006 Oct; 13(10):1194-203. PubMed ID: 16979068
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The Lung Image Database Consortium (LIDC): a comparison of different size metrics for pulmonary nodule measurements.
    Reeves AP; Biancardi AM; Apanasovich TV; Meyer CR; MacMahon H; van Beek EJ; Kazerooni EA; Yankelevitz D; McNitt-Gray MF; McLennan G; Armato SG; Henschke CI; Aberle DR; Croft BY; Clarke LP
    Acad Radiol; 2007 Dec; 14(12):1475-85. PubMed ID: 18035277
    [TBL] [Abstract][Full Text] [Related]  

  • 27. [Computer-aided detection of small pulmonary nodules in multidetector spiral computed tomography (MSCT) in children].
    Honnef D; Behrendt FF; Bakai A; Hohl C; Mahnken AH; Mertens R; Stanzel S; Günther RW; Das M
    Rofo; 2008 Jun; 180(6):540-6. PubMed ID: 18504665
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Segmentation of pulmonary nodules in thoracic CT scans: a region growing approach.
    Dehmeshki J; Amin H; Valdivieso M; Ye X
    IEEE Trans Med Imaging; 2008 Apr; 27(4):467-80. PubMed ID: 18390344
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Computer-aided detection (CAD) in lung cancer screening at chest MDCT: ROC analysis of CAD versus radiologist performance.
    Fraioli F; Bertoletti L; Napoli A; Pediconi F; Calabrese FA; Masciangelo R; Catalano C; Passariello R
    J Thorac Imaging; 2007 Aug; 22(3):241-6. PubMed ID: 17721333
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A comparison of ground truth estimation methods.
    Biancardi AM; Jirapatnakul AC; Reeves AP
    Int J Comput Assist Radiol Surg; 2010 May; 5(3):295-305. PubMed ID: 20033494
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Computer-aided detection (CAD) of lung nodules in CT scans: radiologist performance and reading time with incremental CAD assistance.
    Roos JE; Paik D; Olsen D; Liu EG; Chow LC; Leung AN; Mindelzun R; Choudhury KR; Naidich DP; Napel S; Rubin GD
    Eur Radiol; 2010 Mar; 20(3):549-57. PubMed ID: 19760237
    [TBL] [Abstract][Full Text] [Related]  

  • 32. An investigation of radiologists' perception of lesion similarity: observations with paired breast masses on mammograms and paired lung nodules on CT images.
    Kumazawa S; Muramatsu C; Li Q; Li F; Shiraishi J; Caligiuri P; Schmidt RA; MacMahon H; Doi K
    Acad Radiol; 2008 Jul; 15(7):887-94. PubMed ID: 18572125
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Mixture distribution analysis of a computer assisted diagnostic method for the evaluation of pulmonary nodules on computed tomography scan.
    Kung JW; Matsumoto S; Hasegawa I; Nguyen B; Toto LC; Kundel H; Hatabu H
    Acad Radiol; 2004 Mar; 11(3):281-5. PubMed ID: 15035518
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The Lung Image Database Consortium (LIDC) data collection process for nodule detection and annotation.
    McNitt-Gray MF; Armato SG; Meyer CR; Reeves AP; McLennan G; Pais RC; Freymann J; Brown MS; Engelmann RM; Bland PH; Laderach GE; Piker C; Guo J; Towfic Z; Qing DP; Yankelevitz DF; Aberle DR; van Beek EJ; MacMahon H; Kazerooni EA; Croft BY; Clarke LP
    Acad Radiol; 2007 Dec; 14(12):1464-74. PubMed ID: 18035276
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Automated volumetry of solid pulmonary nodules in a phantom: accuracy across different CT scanner technologies.
    Das M; Mühlenbruch G; Katoh M; Bakai A; Salganicoff M; Stanzel S; Mahnken AH; Günther RW; Wildberger JE
    Invest Radiol; 2007 May; 42(5):297-302. PubMed ID: 17414525
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Influence of nodule detection software on radiologists' confidence in identifying pulmonary nodules with computed tomography.
    Nietert PJ; Ravenel JG; Taylor KK; Silvestri GA
    J Thorac Imaging; 2011 Feb; 26(1):48-53. PubMed ID: 20498624
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Neural network-based computer-aided diagnosis in distinguishing malignant from benign solitary pulmonary nodules by computed tomography.
    Chen H; Wang XH; Ma DQ; Ma BR
    Chin Med J (Engl); 2007 Jul; 120(14):1211-5. PubMed ID: 17697569
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Prospective Study of Spatial Distribution of Missed Lung Nodules by Readers in CT Lung Screening Using Computer-assisted Detection.
    Miki S; Nomura Y; Hayashi N; Hanaoka S; Maeda E; Yoshikawa T; Masutani Y; Abe O
    Acad Radiol; 2021 May; 28(5):647-654. PubMed ID: 32305166
    [TBL] [Abstract][Full Text] [Related]  

  • 39. How can a massive training artificial neural network (MTANN) be trained with a small number of cases in the distinction between nodules and vessels in thoracic CT?
    Suzuki K; Doi K
    Acad Radiol; 2005 Oct; 12(10):1333-41. PubMed ID: 16179210
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Comparing the performance of trained radiographers against experienced radiologists in the UK lung cancer screening (UKLS) trial.
    Nair A; Gartland N; Barton B; Jones D; Clements L; Screaton NJ; Holemans JA; Duffy SW; Field JK; Baldwin DR; Hansell DM; Devaraj A
    Br J Radiol; 2016 Oct; 89(1066):20160301. PubMed ID: 27461068
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.