BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 16979370)

  • 21. Graphene enhanced transformation of lignin in laccase-ABTS system by accelerating electron transfer.
    Pan Y; Ma H; Huang L; Huang J; Liu Y; Huang Z; Li W; Yang J
    Enzyme Microb Technol; 2018 Dec; 119():17-23. PubMed ID: 30243382
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Electrochemical analysis of the interactions of laccase mediators with lignin model compounds.
    Bourbonnais R; Leech D; Paice MG
    Biochim Biophys Acta; 1998 Mar; 1379(3):381-90. PubMed ID: 9545600
    [TBL] [Abstract][Full Text] [Related]  

  • 23. ABTS-modified multiwalled carbon nanotubes as an effective mediating system for bioelectrocatalytic reduction of oxygen.
    Karnicka K; Miecznikowski K; Kowalewska B; Skunik M; Opallo M; Rogalski J; Schuhmann W; Kulesza PJ
    Anal Chem; 2008 Oct; 80(19):7643-8. PubMed ID: 18729478
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Molecular evolution of Fome lignosus laccase by ethyl methane sulfonate-based random mutagenesis in vitro.
    Hu MR; Chao YP; Zhang GQ; Yang XQ; Xue ZQ; Qian SJ
    Biomol Eng; 2007 Dec; 24(6):619-24. PubMed ID: 17923434
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Early attack and subsequent changes produced in an industrial lignin by a fungal laccase and a laccase-mediator system: an analytical approach.
    González Arzola K; Polvillo O; Arias ME; Perestelo F; Carnicero A; González-Vila FJ; Falcón MA
    Appl Microbiol Biotechnol; 2006 Nov; 73(1):141-50. PubMed ID: 17033774
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Mechanistic investigations of the reaction of an iron(III) octa-anionic porphyrin complex with hydrogen peroxide and the catalyzed oxidation of diammonium-2,2'-azinobis(3-ethylbenzothiazoline-6-sulfonate).
    Brausam A; Eigler S; Jux N; van Eldik R
    Inorg Chem; 2009 Aug; 48(16):7667-78. PubMed ID: 19601585
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Expression system of CotA-laccase for directed evolution and high-throughput screenings for the oxidation of high-redox potential dyes.
    Brissos V; Pereira L; Munteanu FD; Cavaco-Paulo A; Martins LO
    Biotechnol J; 2009 Apr; 4(4):558-63. PubMed ID: 19156728
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Degradation of phenolic compounds by laccase immobilized on carbon nanomaterials: diffusional limitation investigation.
    Pang R; Li M; Zhang C
    Talanta; 2015 Jan; 131():38-45. PubMed ID: 25281070
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Kinetic evidence for the interactive inhibition of laccase from Trametes versicolor by pH and chloride.
    Raseda N; Hong S; Kwon OY; Ryu K
    J Microbiol Biotechnol; 2014 Dec; 24(12):1673-8. PubMed ID: 25152059
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Electrochemical analysis of Catechol polymerization in presence of Trametes versicolor laccase and the mediator ABTS.
    Saha R; Mukhopadhyay M
    Enzyme Microb Technol; 2021 Dec; 152():109934. PubMed ID: 34688090
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Aldehyde PEGylation of laccase from Trametes versicolor in route to increase its stability: effect on enzymatic activity.
    Mayolo-Deloisa K; González-González M; Simental-Martínez J; Rito-Palomares M
    J Mol Recognit; 2015 Mar; 28(3):173-9. PubMed ID: 25652594
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Plasma functionalized carbon electrode for laccase-catalyzed oxygen reduction by direct electron transfer.
    Ardhaoui M; Zheng M; Pulpytel J; Dowling D; Jolivalt C; Khonsari FA
    Bioelectrochemistry; 2013 Jun; 91():52-61. PubMed ID: 23416361
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Substrate-dependent expression of laccase in genetically modified Escherichia coli: design and construction of an inducible phenol-degrading system.
    Fathi-Roudsari M; Behmanesh M; Salmanian AH; Sadeghizadeh M; Khajeh K
    Prep Biochem Biotechnol; 2013; 43(5):456-67. PubMed ID: 23581781
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A novel approach for grafting of β-cyclodextrin onto wool via laccase/TEMPO oxidation.
    Yu Y; Wang Q; Yuan J; Fan X; Wang P
    Carbohydr Polym; 2016 Nov; 153():463-470. PubMed ID: 27561518
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Phenolic compounds as enhancers in enzymatic and electrochemical oxidation of veratryl alcohol and lignins.
    Díaz-González M; Vidal T; Tzanov T
    Appl Microbiol Biotechnol; 2011 Mar; 89(6):1693-700. PubMed ID: 21110019
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Exoenzymes of Trametes versicolor can metabolize coplanar PCB congeners and hydroxy PCB.
    Takagi S; Shirota C; Sakaguchi K; Suzuki J; Sue T; Nagasaka H; Hisamatsu S; Sonoki S
    Chemosphere; 2007 Apr; 67(9):S54-7. PubMed ID: 17250871
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Chemoselective C-4 aerobic oxidation of catechin derivatives catalyzed by the Trametes villosa laccase/1-hydroxybenzotriazole system: synthetic and mechanistic aspects.
    Bernini R; Crisante F; Gentili P; Morana F; Pierini M; Piras M
    J Org Chem; 2011 Feb; 76(3):820-32. PubMed ID: 21204551
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Application of laccase-mediator system (LMS) for the degradation of organophosphorus compounds.
    Trovaslet-Leroy M; Jolivalt C; Froment MT; Brasme B; Lefebvre B; Daveloose D; Nachon F; Masson P
    Chem Biol Interact; 2010 Sep; 187(1-3):393-6. PubMed ID: 20149786
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Kinetic studies on the reaction between Trametes villosa laccase and dioxygen.
    Bukh C; Lund M; Bjerrum MJ
    J Inorg Biochem; 2006 Sep; 100(9):1547-57. PubMed ID: 16828870
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Voltammetric determination of catalytic reaction parameters of laccase based on electrooxidation of hydroquinone and ABTS.
    Klis M; Rogalski J; Bilewicz R
    Bioelectrochemistry; 2007 Sep; 71(1):2-7. PubMed ID: 17113361
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.