These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

256 related articles for article (PubMed ID: 16979679)

  • 1. Experimental investigation of a thermoacoustic-Stirling refrigerator driven by a thermoacoustic-Stirling heat engine.
    Luo EC; Dai W; Zhang Y; Ling H
    Ultrasonics; 2006 Dec; 44 Suppl 1():e1531-3. PubMed ID: 16979679
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Experimental study of the influence of different resonators on thermoacoustic conversion performance of a thermoacoustic-Stirling heat engine.
    Luo EC; Ling H; Dai W; Yu GY
    Ultrasonics; 2006 Dec; 44 Suppl 1():e1507-9. PubMed ID: 16996100
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A numerical simulation method and analysis of a complete thermoacoustic-Stirling engine.
    Ling H; Luo E; Dai W
    Ultrasonics; 2006 Dec; 44 Suppl 1():e1511-4. PubMed ID: 16996099
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Solar driven Stirling engine - chemical heat pump - absorption refrigerator hybrid system as environmental friendly energy system.
    Açıkkalp E; Kandemir SY; Ahmadi MH
    J Environ Manage; 2019 Feb; 232():455-461. PubMed ID: 30502614
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Measurement of acoustic output power in a traveling wave engine.
    Miwa M; Sumi T; Biwa T; Ueda Y; Yazaki T
    Ultrasonics; 2006 Dec; 44 Suppl 1():e1527-9. PubMed ID: 16996552
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Thermal modeling and performance analysis of a thermoacoustic refrigerator.
    Holmberg DG; Chen GS; Lin HT; Wo AM
    J Acoust Soc Am; 2003 Aug; 114(2):782-91. PubMed ID: 12942961
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A thermoacoustic-Stirling heat engine: detailed study.
    Backhaus S; Swift GW
    J Acoust Soc Am; 2000 Jun; 107(6):3148-66. PubMed ID: 10875360
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Condensation in a steady-flow thermoacoustic refrigerator.
    Hiller RA; Swift GW
    J Acoust Soc Am; 2000 Oct; 108(4):1521-7. PubMed ID: 11051479
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Factors affecting the temperature of domestic refrigerators].
    Derens E; Laguerre O; Palagos B
    Bull Acad Natl Med; 2001; 185(2):311-22. PubMed ID: 11474586
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Measurements of the impedance matrix of a thermoacoustic core: applications to the design of thermoacoustic engines.
    Bannwart FC; Penelet G; Lotton P; Dalmont JP
    J Acoust Soc Am; 2013 May; 133(5):2650-60. PubMed ID: 23654373
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Design and experiment on a mini cascade thermoacoustic engine.
    Hu Z; Li Q; Xie X; Zhou G; Li Q
    Ultrasonics; 2006 Dec; 44 Suppl 1():e1515-7. PubMed ID: 16970969
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Theoretical prediction of the onset of thermoacoustic instability from the experimental transfer matrix of a thermoacoustic core.
    Guedra M; Penelet G; Lotton P; Dalmont JP
    J Acoust Soc Am; 2011 Jul; 130(1):145-52. PubMed ID: 21786885
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A new predictive dynamic model describing the effect of the ambient temperature and the convective heat transfer coefficient on bacterial growth.
    Ben Yaghlene H; Leguerinel I; Hamdi M; Mafart P
    Int J Food Microbiol; 2009 Jul; 133(1-2):48-61. PubMed ID: 19447512
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Investigation on the different types of resonators in the thermoacoustic Stirling prime mover.
    Xie X; Li Q; Li Z; Li Q
    Ultrasonics; 2006 Dec; 44 Suppl 1():e1503-5. PubMed ID: 16987536
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Study of a thermoacoustic-Stirling engine connected to a piston-crank-flywheel assembly.
    Penelet G; Watanabe T; Biwa T
    J Acoust Soc Am; 2021 Mar; 149(3):1674. PubMed ID: 33765805
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Theory of inert gas-condensing vapor thermoacoustics: transport equations.
    Slaton WV; Raspet R; Hickey CJ; Hiller RA
    J Acoust Soc Am; 2002 Oct; 112(4):1423-30. PubMed ID: 12398450
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of a resistive load on the starting performance of a standing wave thermoacoustic engine: A numerical study.
    Ma L; Weisman C; Baltean-Carlès D; Delbende I; Bauwens L
    J Acoust Soc Am; 2015 Aug; 138(2):847-57. PubMed ID: 26328701
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Performance measurements on a thermoacoustic refrigerator driven at high amplitudes.
    Poese ME; Garrett SL
    J Acoust Soc Am; 2000 May; 107(5 Pt 1):2480-6. PubMed ID: 10830371
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Heat generation, accumulation and dissipation in clusters of the aggregated insects].
    Es'kov EK; Toboev VA
    Zh Obshch Biol; 2009; 70(2):110-20. PubMed ID: 19425349
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Study on heat transfer law of moving temperature variable gas in thermoacoustic plate stack.
    Wang J; Liu X
    Sci Rep; 2024 Apr; 14(1):9486. PubMed ID: 38664526
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.