These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
256 related articles for article (PubMed ID: 16979679)
21. Cooling Cycle Optimization for a Vuilleumier Refrigerator. Paul R; Khodja A; Fischer A; Hoffmann KH Entropy (Basel); 2021 Nov; 23(12):. PubMed ID: 34945868 [TBL] [Abstract][Full Text] [Related]
22. Suppression of harmonics in a model of thermoacoustic refrigerator based on an acoustic metamaterial. Fan L; Ding J; Zhu JJ; Chen Z; Zhang SY; Zhang H; Li XJ J Acoust Soc Am; 2015 Oct; 138(4):EL435-40. PubMed ID: 26520357 [TBL] [Abstract][Full Text] [Related]
23. Influence of resonance tube geometry shape on performance of thermoacoustic engine. Bao R; Chen G; Tang K; Jia Z; Cao W Ultrasonics; 2006 Dec; 44 Suppl 1():e1519-21. PubMed ID: 17056084 [TBL] [Abstract][Full Text] [Related]
24. Cooling intravenous fluids by refrigeration: implications for therapeutic hypothermia. Kamel YM; Jefferson P; Ball DR Emerg Med J; 2009 Aug; 26(8):609-10. PubMed ID: 19625563 [TBL] [Abstract][Full Text] [Related]
25. Multi-method modeling to predict the onset conditions and resonance of the piezo coupled thermoacoustic engine. Ahmed F; Yu G; Luo E J Acoust Soc Am; 2022 Jun; 151(6):4180. PubMed ID: 35778176 [TBL] [Abstract][Full Text] [Related]
26. Thermoacoustic modeling of Fluidyne engine with a gas-coupled water pumping line. Biwa T; Prastowo M; Shoji E J Acoust Soc Am; 2022 Oct; 152(4):2212. PubMed ID: 36319227 [TBL] [Abstract][Full Text] [Related]
28. Operation map of a traveling-wave thermoacoustic electric generator with variable resistive-capacitive electric loads. Ibrahim AH; Elbeltagy K; Ramadan I; Ismail OA; Serag-Eldin MA; Abdel-Rahman E J Acoust Soc Am; 2024 Sep; 156(3):1757-1768. PubMed ID: 39283154 [TBL] [Abstract][Full Text] [Related]
29. Survival at refrigeration and freezing temperatures of Campylobacter coli and Campylobacter jejuni on chicken skin applied as axenic and mixed inoculums. El-Shibiny A; Connerton P; Connerton I Int J Food Microbiol; 2009 May; 131(2-3):197-202. PubMed ID: 19324444 [TBL] [Abstract][Full Text] [Related]
30. Implementing a bidirectional impulse turbine into a thermoacoustic refrigerator. Timmer MAG; de Blok K; van der Meer TH J Acoust Soc Am; 2020 Sep; 148(3):1703. PubMed ID: 33003881 [TBL] [Abstract][Full Text] [Related]
31. Transient performance prediction of solar dish concentrator integrated with stirling and TEG for small scale irrigation system: A case of Ethiopia. Bekele EA; Ancha VR Heliyon; 2022 Sep; 8(9):e10629. PubMed ID: 36158084 [TBL] [Abstract][Full Text] [Related]
32. Thermodynamic analysis of a gamma type Stirling engine in an energy recovery system. Sowale A; Kolios AJ; Fidalgo B; Somorin T; Parker A; Williams L; Collins M; McAdam E; Tyrrel S Energy Convers Manag; 2018 Jun; 165():528-540. PubMed ID: 29861520 [TBL] [Abstract][Full Text] [Related]
33. Stirling Refrigerating Machine Modeling Using Schmidt and Finite Physical Dimensions Thermodynamic Models: A Comparison with Experiments. Dobre C; Grosu L; Dobrovicescu A; Chişiu G; Constantin M Entropy (Basel); 2021 Mar; 23(3):. PubMed ID: 33808885 [TBL] [Abstract][Full Text] [Related]
34. The optimal stack spacing for thermoacoustic refrigeration. Tijani ME; Zeegers JC; de Waele AT J Acoust Soc Am; 2002 Jul; 112(1):128-33. PubMed ID: 12141337 [TBL] [Abstract][Full Text] [Related]
35. Temperature-dependent maximization of work and efficiency in a degeneracy-assisted quantum Stirling heat engine. Chatterjee S; Koner A; Chatterjee S; Kumar C Phys Rev E; 2021 Jun; 103(6-1):062109. PubMed ID: 34271723 [TBL] [Abstract][Full Text] [Related]
36. Analysis of forming mechanism and influencing factors of thermoacoustic plate end temperature difference. Wang J; Liu X; Meng N Sci Rep; 2024 Sep; 14(1):21219. PubMed ID: 39261493 [TBL] [Abstract][Full Text] [Related]
37. A looped heat-driven thermoacoustic refrigeration system with direct-coupling configuration for room temperature cooling. Wang H; Zhang L; Yu G; Hu J; Luo E; Ma Y; Jiang C; Liu X Sci Bull (Beijing); 2019 Jan; 64(1):8-10. PubMed ID: 36659525 [No Abstract] [Full Text] [Related]
38. Modeling of thermoacoustic systems using the nonlinear frequency domain method. de Jong JA; Wijnant YH; Wilcox D; de Boer A J Acoust Soc Am; 2015 Sep; 138(3):1241-52. PubMed ID: 26428763 [TBL] [Abstract][Full Text] [Related]
39. Quasilinear irreversible thermodynamics of a low-temperature-differential kinematic Stirling heat engine. Izumida Y Phys Rev E; 2020 Jul; 102(1-1):012142. PubMed ID: 32795077 [TBL] [Abstract][Full Text] [Related]
40. Thermodynamic feature of a Brownian heat engine operating between two heat baths. Asfaw M Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jan; 89(1):012143. PubMed ID: 24580208 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]