BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 16979822)

  • 1. Quantification and thickness correction of EFTEM phosphorus maps.
    Aronova MA; Kim YC; Zhang G; Leapman RD
    Ultramicroscopy; 2007; 107(2-3):232-44. PubMed ID: 16979822
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantitative EFTEM mapping of near physiological calcium concentrations in biological specimens.
    Aronova MA; Kim YC; Pivovarova NB; Andrews SB; Leapman RD
    Ultramicroscopy; 2009 Feb; 109(3):201-12. PubMed ID: 19118952
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Elemental mapping of labelled biological specimens at intermediate energy loss in an energy-filtered TEM acquired using a direct detection device.
    Ramachandra R; Mackey MR; Hu J; Peltier ST; Xuong NH; Ellisman MH; Adams SR
    J Microsc; 2021 Aug; 283(2):127-144. PubMed ID: 33844293
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Three-dimensional elemental mapping of phosphorus by quantitative electron spectroscopic tomography (QuEST).
    Aronova MA; Kim YC; Harmon R; Sousa AA; Zhang G; Leapman RD
    J Struct Biol; 2007 Oct; 160(1):35-48. PubMed ID: 17693097
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Improving the reliability of the background extrapolation in transmission electron microscopy elemental maps by using three pre-edge windows.
    Heil T; Gralla B; Epping M; Kohl H
    Ultramicroscopy; 2012 Jul; 118():11-6. PubMed ID: 22728399
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A new simple method for quantification and locating P and N reserves in microalgal cells based on energy-filtered transmission electron microscopy (EFTEM) elemental maps.
    Ismagulova T; Shebanova A; Gorelova O; Baulina O; Solovchenko A
    PLoS One; 2018; 13(12):e0208830. PubMed ID: 30533056
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optimization of quantitative electron energy loss spectroscopy in the low loss region: phosphorus L-edge.
    Wang YY; Ho R; Shao Z; Somlyo AP
    Ultramicroscopy; 1992; 41(1-3):11-31. PubMed ID: 1641912
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reprint of "Three-dimensional elemental mapping of phosphorus by quantitative electron spectroscopic tomography (QuEST)" [J. Struct. Biol. 160 (2007) 35-48].
    Aronova MA; Kim YC; Harmon R; Sousa AA; Zhang G; Leapman RD
    J Struct Biol; 2008 Mar; 161(3):322-35. PubMed ID: 18342742
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Limitations of beam damage in electron spectroscopic tomography of embedded cells.
    Aronova MA; Sousa AA; Zhang G; Leapman RD
    J Microsc; 2010 Sep; 239(3):223-32. PubMed ID: 20701660
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electron energy-loss spectroscopy as a tool for elemental analysis in biological specimens.
    Kapp N; Studer D; Gehr P; Geiser M
    Methods Mol Biol; 2007; 369():431-47. PubMed ID: 17656763
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Three-dimensional distributions of elements in biological samples by energy-filtered electron tomography.
    Leapman RD; Kocsis E; Zhang G; Talbot TL; Laquerriere P
    Ultramicroscopy; 2004 Jul; 100(1-2):115-25. PubMed ID: 15219696
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Automated spatial drift correction for EFTEM image series.
    Schaffer B; Grogger W; Kothleitner G
    Ultramicroscopy; 2004 Dec; 102(1):27-36. PubMed ID: 15556698
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The influence of inelastic scattering on EFTEM images--exemplified at 20 kV for graphene and silicon.
    Lee Z; Rose H; Hambach R; Wachsmuth P; Kaiser U
    Ultramicroscopy; 2013 Nov; 134():102-12. PubMed ID: 23870401
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Elemental mapping in achromatic atomic-resolution energy-filtered transmission electron microscopy.
    Forbes BD; Houben L; Mayer J; Dunin-Borkowski RE; Allen LJ
    Ultramicroscopy; 2014 Dec; 147():98-105. PubMed ID: 25064541
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Elemental maps from EFTEM images using two different background subtraction models.
    Quintana C; Lechaire JP; Bonnet N; Risco C; Carrascosa JL
    Microsc Res Tech; 2001 Apr; 53(2):147-56. PubMed ID: 11301490
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optimization of phosphorus localization by EFTEM of nucleic acid containing structures.
    Quintana C; Marco S; Bonnet N; Risco C; Gutiérrez ML; Guerrero A; Carrascosa JL
    Micron; 1998 Aug; 29(4):297-307. PubMed ID: 9744088
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Energy-filtering transmission electron microscopy (EFTEM) in the elemental analysis of pseudoexfoliative material.
    Schlötzer-Schrehardt U; Körtje KH; Erb C
    Curr Eye Res; 2001 Feb; 22(2):154-62. PubMed ID: 11402393
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biological applications of energy-filtered TEM.
    Saunders M; Shaw JA
    Methods Mol Biol; 2014; 1117():689-706. PubMed ID: 24357386
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High-Energy Electron Scattering in
    Hayashida M; Malac M
    Microsc Microanal; 2022 Mar; ():1-13. PubMed ID: 35343421
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Width determination of SiO2-films in Si-based devices using low-loss EFTEM: image contrast as a function of sample thickness.
    Schaffer B; Grogger W; Hofer F
    Micron; 2003; 34(1):1-7. PubMed ID: 12694852
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.