These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

224 related articles for article (PubMed ID: 16980122)

  • 21. The proteins encoded by the pogo-like Lemi1 element bind the TIRs and subterminal repeated motifs of the Arabidopsis Emigrant MITE: consequences for the transposition mechanism of MITEs.
    Loot C; Santiago N; Sanz A; Casacuberta JM
    Nucleic Acids Res; 2006; 34(18):5238-46. PubMed ID: 17003053
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Transposable elements and the plant pan-genomes.
    Morgante M; De Paoli E; Radovic S
    Curr Opin Plant Biol; 2007 Apr; 10(2):149-55. PubMed ID: 17300983
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Retroelements, transposons and methylation status in the genome of oil palm (Elaeis guineensis) and the relationship to somaclonal variation.
    Kubis SE; Castilho AM; Vershinin AV; Heslop-Harrison JS
    Plant Mol Biol; 2003 May; 52(1):69-79. PubMed ID: 12825690
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Superior: a novel repetitive DNA element dispersed in the rye genome.
    Tomita M; Kuramochi M; Iwata S
    Cytogenet Genome Res; 2009; 125(4):306-20. PubMed ID: 19864894
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Turning junk into gold: domestication of transposable elements and the creation of new genes in eukaryotes.
    Volff JN
    Bioessays; 2006 Sep; 28(9):913-22. PubMed ID: 16937363
    [TBL] [Abstract][Full Text] [Related]  

  • 26. [Stress activation and genomic impact of plant retrotransposons].
    Grandbastien MA
    J Soc Biol; 2004; 198(4):425-32. PubMed ID: 15969350
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Repetitive DNA and chromosomal rearrangements: speciation-related events in plant genomes.
    Raskina O; Barber JC; Nevo E; Belyayev A
    Cytogenet Genome Res; 2008; 120(3-4):351-7. PubMed ID: 18504364
    [TBL] [Abstract][Full Text] [Related]  

  • 28. [The influence of transposable elements on genome size].
    Biémont C; Vieira C
    J Soc Biol; 2004; 198(4):413-7. PubMed ID: 15969348
    [TBL] [Abstract][Full Text] [Related]  

  • 29. CACTA transposons in Triticeae. A diverse family of high-copy repetitive elements.
    Wicker T; Guyot R; Yahiaoui N; Keller B
    Plant Physiol; 2003 May; 132(1):52-63. PubMed ID: 12746511
    [TBL] [Abstract][Full Text] [Related]  

  • 30. ROSINA (RSI) is part of a CACTA transposable element, TamRSI, and links flower development to transposon activity.
    Roccaro M; Li Y; Sommer H; Saedler H
    Mol Genet Genomics; 2007 Sep; 278(3):243-54. PubMed ID: 17588178
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Mobilization of Pack-CACTA transposons in Arabidopsis suggests the mechanism of gene shuffling.
    Catoni M; Jonesman T; Cerruti E; Paszkowski J
    Nucleic Acids Res; 2019 Feb; 47(3):1311-1320. PubMed ID: 30476196
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Model-based identification of Helitrons results in a new classification of their families in Arabidopsis thaliana.
    Tempel S; Nicolas J; El Amrani A; Couée I
    Gene; 2007 Nov; 403(1-2):18-28. PubMed ID: 17889452
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Plant genome organisation and diversity: the year of the junk!
    Morgante M
    Curr Opin Biotechnol; 2006 Apr; 17(2):168-73. PubMed ID: 16530402
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Identification of novel non-autonomous CemaT transposable elements and evidence of their mobility within the C. elegans genome.
    Brownlie JC; Whyard S
    Genetica; 2005 Nov; 125(2-3):243-51. PubMed ID: 16247696
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Control of development and transposon movement by DNA methylation in Arabidopsis thaliana.
    Kakutani T; Kato M; Kinoshita T; Miura A
    Cold Spring Harb Symp Quant Biol; 2004; 69():139-43. PubMed ID: 16117643
    [No Abstract]   [Full Text] [Related]  

  • 36. Survey of natural and transgenic gene markers used to monitor transposon activity.
    Krishnaswamy L; Peterson T
    Methods Mol Biol; 2013; 1057():43-58. PubMed ID: 23918420
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The ancient mariner sails again: transposition of the human Hsmar1 element by a reconstructed transposase and activities of the SETMAR protein on transposon ends.
    Miskey C; Papp B; Mátés L; Sinzelle L; Keller H; Izsvák Z; Ivics Z
    Mol Cell Biol; 2007 Jun; 27(12):4589-600. PubMed ID: 17403897
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The CACTA transposon Bot1 played a major role in Brassica genome divergence and gene proliferation.
    Alix K; Joets J; Ryder CD; Moore J; Barker GC; Bailey JP; King GJ; Pat Heslop-Harrison JS
    Plant J; 2008 Dec; 56(6):1030-44. PubMed ID: 18764926
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Pulling apart catalytically active Tn5 synaptic complexes using magnetic tweezers.
    Adams CD; Schnurr B; Marko JF; Reznikoff WS
    J Mol Biol; 2007 Mar; 367(2):319-27. PubMed ID: 17257617
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Structure/function insights into Tn5 transposition.
    Steiniger-White M; Rayment I; Reznikoff WS
    Curr Opin Struct Biol; 2004 Feb; 14(1):50-7. PubMed ID: 15102449
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.