BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 16980272)

  • 1. Preparation of poly (alkylcyanoacrylate) nanoparticles by polymerization of water-free microemulsions.
    Krauel K; Graf A; Hook SM; Davies NM; Rades T
    J Microencapsul; 2006 Aug; 23(5):499-512. PubMed ID: 16980272
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Using different structure types of microemulsions for the preparation of poly(alkylcyanoacrylate) nanoparticles by interfacial polymerization.
    Krauel K; Davies NM; Hook S; Rades T
    J Control Release; 2005 Aug; 106(1-2):76-87. PubMed ID: 15967536
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Protein delivery using nanoparticles based on microemulsions with different structure-types.
    Graf A; Jack KS; Whittaker AK; Hook SM; Rades T
    Eur J Pharm Sci; 2008 Apr; 33(4-5):434-44. PubMed ID: 18329862
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterisation of microemulsions containing orange oil with water and propylene glycol as hydrophilic components.
    Yotsawimonwat S; Okonoki S; Krauel K; Sirithunyalug J; Sirithunyalug B; Rades T
    Pharmazie; 2006 Nov; 61(11):920-6. PubMed ID: 17152984
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microemulsions containing lecithin and sugar-based surfactants: nanoparticle templates for delivery of proteins and peptides.
    Graf A; Ablinger E; Peters S; Zimmer A; Hook S; Rades T
    Int J Pharm; 2008 Feb; 350(1-2):351-60. PubMed ID: 17923347
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterisation of colloidal drug delivery systems from the naked eye to Cryo-FESEM.
    Krauel K; Girvan L; Hook S; Rades T
    Micron; 2007; 38(8):796-803. PubMed ID: 17698364
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterizing colloidal structures of pseudoternary phase diagrams formed by oil/water/amphiphile systems.
    Alany RG; Tucker IG; Davies NM; Rades T
    Drug Dev Ind Pharm; 2001 Jan; 27(1):31-8. PubMed ID: 11247533
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Preparation of biodegradable insulin nanocapsules from biocompatible microemulsions.
    Watnasirichaikul S; Davies NM; Rades T; Tucker IG
    Pharm Res; 2000 Jun; 17(6):684-9. PubMed ID: 10955841
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Increasing entrapment of peptides within poly(alkyl cyanoacrylate) nanoparticles prepared from water-in-oil microemulsions by copolymerization.
    Liang M; Davies NM; Toth I
    Int J Pharm; 2008 Oct; 362(1-2):141-6. PubMed ID: 18598746
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Investigation of surfactant/cosurfactant synergism impact on ibuprofen solubilization capacity and drug release characteristics of nonionic microemulsions.
    Djekic L; Primorac M; Filipic S; Agbaba D
    Int J Pharm; 2012 Aug; 433(1-2):25-33. PubMed ID: 22579578
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development of sterically stabilized poly(isobutyl 2-cyanoacrylate) nanoparticles by chemical coupling of poly(ethylene glycol).
    Peracchia MT; Vauthier C; Puisieux F; Couvreur P
    J Biomed Mater Res; 1997 Mar; 34(3):317-26. PubMed ID: 9086401
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization of cephalexin loaded nonionic microemulsions.
    Fanun M; Papadimitriou V; Xenakis A
    J Colloid Interface Sci; 2011 Sep; 361(1):115-21. PubMed ID: 21658706
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Preparation of griseofulvin nanoparticles from water-dilutable microemulsions.
    Trotta M; Gallarate M; Carlotti ME; Morel S
    Int J Pharm; 2003 Mar; 254(2):235-42. PubMed ID: 12623199
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Probing the microstructure of nonionic microemulsions with ethyl oleate by viscosity, ROESY, DLS, SANS, and cyclic voltammetry.
    Kaur G; Chiappisi L; Prévost S; Schweins R; Gradzielski M; Mehta SK
    Langmuir; 2012 Jul; 28(29):10640-52. PubMed ID: 22720716
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microemulsion Delivery Systems with Low Surfactant Concentrations: Optimization of Structure and Properties by Glycol Cosurfactants.
    Szumała P; Kaplińska J; Makurat-Kasprolewicz B; Mania S
    Mol Pharm; 2023 Jan; 20(1):232-240. PubMed ID: 36354760
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Formation of microemulsions for using as cosmeceutical delivery systems: effects of various components and characteristics of some formulations.
    Wuttikul K; Boonme P
    Drug Deliv Transl Res; 2016 Jun; 6(3):254-62. PubMed ID: 26813671
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Improved intestinal delivery of salmon calcitonin by water-in-oil microemulsions.
    Fan Y; Li X; Zhou Y; Fan C; Wang X; Huang Y; Liu Y
    Int J Pharm; 2011 Sep; 416(1):323-30. PubMed ID: 21726618
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Polyurethane and polyurea nanoparticles based on polyoxyethylene castor oil derivative surfactant suitable for endovascular applications.
    Morral-Ruíz G; Melgar-Lesmes P; García ML; Solans C; García-Celma MJ
    Int J Pharm; 2014 Jan; 461(1-2):1-13. PubMed ID: 24275445
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparison of different water/oil microemulsions containing diclofenac sodium: preparation, characterization, release rate, and skin irritation studies.
    Kantarci G; Ozgüney I; Karasulu HY; Arzik S; Güneri T
    AAPS PharmSciTech; 2007 Nov; 8(4):E91. PubMed ID: 18181551
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tuning high aqueous phase uptake in nonionic water-in-oil microemulsions for the synthesis of Mn-Zn ferrite nanoparticles: phase behavior, characterization, and nanoparticle synthesis.
    Aubery C; Solans C; Sanchez-Dominguez M
    Langmuir; 2011 Dec; 27(23):14005-13. PubMed ID: 22039992
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.