These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

207 related articles for article (PubMed ID: 16980361)

  • 1. Beneath the minerals, a layer of round lipid particles was identified to mediate collagen calcification in compact bone formation.
    Xu S; Yu JJ
    Biophys J; 2006 Dec; 91(11):4221-9. PubMed ID: 16980361
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Aspects of collagen mineralization in hard tissue formation.
    Wiesmann HP; Meyer U; Plate U; Höhling HJ
    Int Rev Cytol; 2005; 242():121-56. PubMed ID: 15598468
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The nature of the mineral component of bone and the mechanism of calcification.
    Glimcher MJ
    Instr Course Lect; 1987; 36():49-69. PubMed ID: 3325562
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Elastic properties of collagen in bone determined by measuring the Debye-Waller factor.
    Sasaki N; Shirakawa H; Nozoe T; Furusawa K
    J Biomech; 2013 Nov; 46(16):2824-30. PubMed ID: 24090493
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Osteoblasts generate harder, stiffer, and more delamination-resistant mineralized tissue on titanium than on polystyrene, associated with distinct tissue micro- and ultrastructure.
    Saruwatari L; Aita H; Butz F; Nakamura HK; Ouyang J; Yang Y; Chiou WA; Ogawa T
    J Bone Miner Res; 2005 Nov; 20(11):2002-16. PubMed ID: 16234974
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Influence of the mineral staggering on the elastic properties of the mineralized collagen fibril in lamellar bone.
    Vercher-Martínez A; Giner E; Arango C; Fuenmayor FJ
    J Mech Behav Biomed Mater; 2015 Feb; 42():243-56. PubMed ID: 25498297
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A mixed packing model for bone collagen.
    Lees S
    Calcif Tissue Int; 1981; 33(6):591-602. PubMed ID: 6799171
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characteristics of mineral particles in the human bone/cartilage interface.
    Zizak I; Roschger P; Paris O; Misof BM; Berzlanovich A; Bernstorff S; Amenitsch H; Klaushofer K; Fratzl P
    J Struct Biol; 2003 Mar; 141(3):208-17. PubMed ID: 12648567
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Aging exacerbates the morphological and mechanical response of mineralized collagen fibrils in murine cortical bone to disuse.
    Liu F; Hu K; Al-Qudsy LH; Wu LQ; Wang Z; Xu HY; Yang H; Yang PF
    Acta Biomater; 2022 Oct; 152():345-354. PubMed ID: 36087867
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The primary calcification in bones follows removal of decorin and fusion of collagen fibrils.
    Hoshi K; Kemmotsu S; Takeuchi Y; Amizuka N; Ozawa H
    J Bone Miner Res; 1999 Feb; 14(2):273-80. PubMed ID: 9933482
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reconsideration of hydrophobic lipid distributions in lipoprotein particles.
    Kumpula LS; Kumpula JM; Taskinen MR; Jauhiainen M; Kaski K; Ala-Korpela M
    Chem Phys Lipids; 2008 Sep; 155(1):57-62. PubMed ID: 18611396
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mineralised tissues as nanomaterials: analysis by atomic force microscopy.
    Bozec L; de Groot J; Odlyha M; Nicholls B; Horton MA
    IEE Proc Nanobiotechnol; 2005 Oct; 152(5):183-6. PubMed ID: 16441178
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mineralized collagen fibrils: a mechanical model with a staggered arrangement of mineral particles.
    Jäger I; Fratzl P
    Biophys J; 2000 Oct; 79(4):1737-46. PubMed ID: 11023882
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Computational studies of plasma lipoprotein lipids.
    Pan L; Segrest JP
    Biochim Biophys Acta; 2016 Oct; 1858(10):2401-2420. PubMed ID: 26969087
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Neutron diffraction studies of collagen in fully mineralized bone.
    Bonar LC; Lees S; Mook HA
    J Mol Biol; 1985 Jan; 181(2):265-70. PubMed ID: 3981637
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Size and shape of mineralites in young bovine bone measured by atomic force microscopy.
    Tong W; Glimcher MJ; Katz JL; Kuhn L; Eppell SJ
    Calcif Tissue Int; 2003 May; 72(5):592-8. PubMed ID: 12724830
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Energetic basis for the molecular-scale organization of bone.
    Tao J; Battle KC; Pan H; Salter EA; Chien YC; Wierzbicki A; De Yoreo JJ
    Proc Natl Acad Sci U S A; 2015 Jan; 112(2):326-31. PubMed ID: 25540415
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Unique micro- and nano-scale mineralization pattern of human osteogenesis imperfecta type VI bone.
    Fratzl-Zelman N; Schmidt I; Roschger P; Roschger A; Glorieux FH; Klaushofer K; Wagermaier W; Rauch F; Fratzl P
    Bone; 2015 Apr; 73():233-41. PubMed ID: 25554599
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electron microscopy of cartilage and bone matrix at the distal epiphyseal line of the femur in the newborn infant.
    CAMERON DA; ROBINSON RA
    J Biophys Biochem Cytol; 1956 Jul; 2(4 Suppl):253-60. PubMed ID: 13357550
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ultrastructural analysis of bone calcification by using energy-filtering transmission electron microscopy.
    Hoshi K; Ejiri S; Ozawa H
    Ital J Anat Embryol; 2001; 106(2 Suppl 1):141-50. PubMed ID: 11729949
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.