These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 16980387)

  • 1. Differential requirement of DNA replication factors for subtelomeric ARS consensus sequence protosilencers in Saccharomyces cerevisiae.
    Rehman MA; Fourel G; Mathews A; Ramdin D; Espinosa M; Gilson E; Yankulov K
    Genetics; 2006 Dec; 174(4):1801-10. PubMed ID: 16980387
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Origin association of Sld3, Sld7, and Cdc45 proteins is a key step for determination of origin-firing timing.
    Tanaka S; Nakato R; Katou Y; Shirahige K; Araki H
    Curr Biol; 2011 Dec; 21(24):2055-63. PubMed ID: 22169533
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structural changes in Mcm5 protein bypass Cdc7-Dbf4 function and reduce replication origin efficiency in Saccharomyces cerevisiae.
    Hoang ML; Leon RP; Pessoa-Brandao L; Hunt S; Raghuraman MK; Fangman WL; Brewer BJ; Sclafani RA
    Mol Cell Biol; 2007 Nov; 27(21):7594-602. PubMed ID: 17724082
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Limitations of silencing at native yeast telomeres.
    Pryde FE; Louis EJ
    EMBO J; 1999 May; 18(9):2538-50. PubMed ID: 10228167
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sld3, which interacts with Cdc45 (Sld4), functions for chromosomal DNA replication in Saccharomyces cerevisiae.
    Kamimura Y; Tak YS; Sugino A; Araki H
    EMBO J; 2001 Apr; 20(8):2097-107. PubMed ID: 11296242
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Subtelomeric ACS-containing proto-silencers act as antisilencers in replication factors mutants in Saccharomyces cerevisiae.
    Rehman MA; Wang D; Fourel G; Gilson E; Yankulov K
    Mol Biol Cell; 2009 Jan; 20(2):631-41. PubMed ID: 19005221
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Loss control of Mcm5 interaction with chromatin in cdc6-1 mutated in CDC-NTP motif.
    Feng L; Hu Y; Wang B; Wu L; Jong A
    DNA Cell Biol; 2000 Jul; 19(7):447-57. PubMed ID: 10945234
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Xenopus cdc7 function is dependent on licensing but not on XORC, XCdc6, or CDK activity and is required for XCdc45 loading.
    Jares P; Blow JJ
    Genes Dev; 2000 Jun; 14(12):1528-40. PubMed ID: 10859170
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Genome-wide distribution of ORC and MCM proteins in S. cerevisiae: high-resolution mapping of replication origins.
    Wyrick JJ; Aparicio JG; Chen T; Barnett JD; Jennings EG; Young RA; Bell SP; Aparicio OM
    Science; 2001 Dec; 294(5550):2357-60. PubMed ID: 11743203
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cell cycle dependent topological changes of chromosomal replication origins in Saccharomyces cerevisiae.
    Fujita M; Hori Y; Shirahige K; Tsurimoto T; Yoshikawa H; Obuse C
    Genes Cells; 1998 Nov; 3(11):737-49. PubMed ID: 9990508
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modulation of Gene Silencing by Cdc7p via H4 K16 Acetylation and Phosphorylation of Chromatin Assembly Factor CAF-1 in
    Young TJ; Cui Y; Irudayaraj J; Kirchmaier AL
    Genetics; 2019 Apr; 211(4):1219-1237. PubMed ID: 30728156
    [TBL] [Abstract][Full Text] [Related]  

  • 12. DNA replication-independent silencing in S. cerevisiae.
    Kirchmaier AL; Rine J
    Science; 2001 Jan; 291(5504):646-50. PubMed ID: 11158676
    [TBL] [Abstract][Full Text] [Related]  

  • 13. 14-3-3 proteins function in the initiation and elongation steps of DNA replication in Saccharomyces cerevisiae.
    Yahyaoui W; Zannis-Hadjopoulos M
    J Cell Sci; 2009 Dec; 122(Pt 24):4419-26. PubMed ID: 19934224
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Set1- and Clb5-deficiencies disclose the differential regulation of centromere and telomere dynamics in Saccharomyces cerevisiae meiosis.
    Trelles-Sticken E; Bonfils S; Sollier J; Géli V; Scherthan H; de La Roche Saint-André C
    J Cell Sci; 2005 Nov; 118(Pt 21):4985-94. PubMed ID: 16254243
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The silencing complex SAS-I links histone acetylation to the assembly of repressed chromatin by CAF-I and Asf1 in Saccharomyces cerevisiae.
    Meijsing SH; Ehrenhofer-Murray AE
    Genes Dev; 2001 Dec; 15(23):3169-82. PubMed ID: 11731480
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mutations in Ran system affected telomere silencing in Saccharomyces cerevisiae.
    Hayashi N; Kobayashi M; Shimizu H; Yamamoto K; Murakami S; Nishimoto T
    Biochem Biophys Res Commun; 2007 Nov; 363(3):788-94. PubMed ID: 17904525
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The essential role of Saccharomyces cerevisiae CDC6 nucleotide-binding site in cell growth, DNA synthesis, and Orc1 association.
    Wang B; Feng L; Hu Y; Huang SH; Reynolds CP; Wu L; Jong AY
    J Biol Chem; 1999 Mar; 274(12):8291-8. PubMed ID: 10075735
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Control of replication initiation by the Sum1/Rfm1/Hst1 histone deacetylase.
    Weber JM; Irlbacher H; Ehrenhofer-Murray AE
    BMC Mol Biol; 2008 Nov; 9():100. PubMed ID: 18990212
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Positive roles of SAS2 in DNA replication and transcriptional silencing in yeast.
    Zou Y; Bi X
    Nucleic Acids Res; 2008 Sep; 36(16):5189-200. PubMed ID: 18682530
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The mcm5-bob1 bypass of Cdc7p/Dbf4p in DNA replication depends on both Cdk1-independent and Cdk1-dependent steps in Saccharomyces cerevisiae.
    Sclafani RA; Tecklenburg M; Pierce A
    Genetics; 2002 May; 161(1):47-57. PubMed ID: 12019222
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.