BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

291 related articles for article (PubMed ID: 16980395)

  • 1. A gain-of-function screen identifying genes required for vein formation in the Drosophila melanogaster wing.
    Molnar C; López-Varea A; Hernández R; de Celis JF
    Genetics; 2006 Nov; 174(3):1635-59. PubMed ID: 16980395
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A gain-of-function screen identifying genes required for growth and pattern formation of the Drosophila melanogaster wing.
    Cruz C; Glavic A; Casado M; de Celis JF
    Genetics; 2009 Nov; 183(3):1005-26. PubMed ID: 19737745
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification of genes affecting wing patterning through a loss-of-function mutagenesis screen and characterization of med15 function during wing development.
    Terriente-Félix A; López-Varea A; de Celis JF
    Genetics; 2010 Jun; 185(2):671-84. PubMed ID: 20233856
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Screening of larval/pupal P-element induced lethals on the second chromosome in Drosophila melanogaster: clonal analysis and morphology of imaginal discs.
    Roch F; Serras F; Cifuentes FJ; Corominas M; Alsina B; Amorós M; López-Varea A; Hernández R; Guerra D; Cavicchi S; Baguñá J; García-Bellido A
    Mol Gen Genet; 1998 Jan; 257(2):103-12. PubMed ID: 9491068
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phenotypic and molecular characterization of SerD, a dominant allele of the Drosophila gene Serrate.
    Thomas U; Jönsson F; Speicher SA; Knust E
    Genetics; 1995 Jan; 139(1):203-13. PubMed ID: 7705624
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Genetic annotation of gain-of-function screens using RNA interference and in situ hybridization of candidate genes in the Drosophila wing.
    Molnar C; Casado M; López-Varea A; Cruz C; de Celis JF
    Genetics; 2012 Oct; 192(2):741-52. PubMed ID: 22798488
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A gain-of-function suppressor screen for genes involved in dorsal-ventral boundary formation in the Drosophila wing.
    Bejarano F; Luque CM; Herranz H; Sorrosal G; Rafel N; Pham TT; Milán M
    Genetics; 2008 Jan; 178(1):307-23. PubMed ID: 18202376
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Genetic basis of wing morphogenesis in Drosophila: sexual dimorphism and non-allometric effects of shape variation.
    Carreira VP; Soto IM; Mensch J; Fanara JJ
    BMC Dev Biol; 2011 Jun; 11():32. PubMed ID: 21635778
    [TBL] [Abstract][Full Text] [Related]  

  • 9. patufet, the gene encoding the Drosophila melanogaster homologue of selenophosphate synthetase, is involved in imaginal disc morphogenesis.
    Alsina B; Serras F; Baguñá J; Corominas M
    Mol Gen Genet; 1998 Jan; 257(2):113-23. PubMed ID: 9491069
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Integrins modulate Sog activity in the Drosophila wing.
    Araujo H; Negreiros E; Bier E
    Development; 2003 Aug; 130(16):3851-64. PubMed ID: 12835400
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Developmental instability of the Drosophila wing as an index of genomic perturbation and altered cell proliferation.
    Trotta V; Garoia F; Guerra D; Pezzoli MC; Grifoni D; Cavicchi S
    Evol Dev; 2005; 7(3):234-43. PubMed ID: 15876196
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Disruption of the protein kinase N gene of drosophila melanogaster results in the recessive delorean allele (pkndln) with a negative impact on wing morphogenesis.
    Sass GL; Ostrow BD
    G3 (Bethesda); 2014 Apr; 4(4):643-56. PubMed ID: 24531729
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A targeted genetic modifier screen links the SWI2/SNF2 protein domino to growth and autophagy genes in Drosophila melanogaster.
    Kwon MH; Callaway H; Zhong J; Yedvobnick B
    G3 (Bethesda); 2013 May; 3(5):815-25. PubMed ID: 23550128
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A large-scale, in vivo transcription factor screen defines bivalent chromatin as a key property of regulatory factors mediating Drosophila wing development.
    Schertel C; Albarca M; Rockel-Bauer C; Kelley NW; Bischof J; Hens K; van Nimwegen E; Basler K; Deplancke B
    Genome Res; 2015 Apr; 25(4):514-23. PubMed ID: 25568052
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Analysis of the genetic hierarchy guiding wing vein development in Drosophila.
    Sturtevant MA; Bier E
    Development; 1995 Mar; 121(3):785-801. PubMed ID: 7720583
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Blistered: a gene required for vein/intervein formation in wings of Drosophila.
    Fristrom D; Gotwals P; Eaton S; Kornberg TB; Sturtevant M; Bier E; Fristrom JW
    Development; 1994 Sep; 120(9):2661-71. PubMed ID: 7956840
    [TBL] [Abstract][Full Text] [Related]  

  • 17. wing blister, a new Drosophila laminin alpha chain required for cell adhesion and migration during embryonic and imaginal development.
    Martin D; Zusman S; Li X; Williams EL; Khare N; DaRocha S; Chiquet-Ehrismann R; Baumgartner S
    J Cell Biol; 1999 Apr; 145(1):191-201. PubMed ID: 10189378
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Anchor negatively regulates BMP signalling to control Drosophila wing development.
    Wang XC; Liu Z; Jin LH
    Eur J Cell Biol; 2018 May; 97(4):308-317. PubMed ID: 29735293
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Targeted gain-of-function screening in Drosophila using GAL4-UAS and random transposon insertions.
    Zhong J; Yedvobnick B
    Genet Res (Camb); 2009 Aug; 91(4):243-58. PubMed ID: 19640320
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A large scale screen for genes (3rd chromosome) related to Wingless signaling pathway.
    Lin XD; Lin XH; Chen JA
    J Zhejiang Univ Sci; 2004 Feb; 5(2):186-92. PubMed ID: 14674030
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.