These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

205 related articles for article (PubMed ID: 16980457)

  • 21. The twin-arginine translocation pathway in α-proteobacteria is functionally preserved irrespective of genomic and regulatory divergence.
    Nuñez PA; Soria M; Farber MD
    PLoS One; 2012; 7(3):e33605. PubMed ID: 22438962
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Evidence for interactions between domains of TatA and TatB from mutagenesis of the TatABC subunits of the twin-arginine translocase.
    Barrett CM; Robinson C
    FEBS J; 2005 May; 272(9):2261-75. PubMed ID: 15853811
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A putative twin-arginine translocation system in the phytopathogenic bacterium Xylella fastidiosa.
    Ciapina LP; Picchi SC; Lacroix JM; Lemos EG; Ödberg-Ferragut C
    Can J Microbiol; 2011 Feb; 57(2):149-54. PubMed ID: 21326357
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The core TatABC complex of the twin-arginine translocase in Escherichia coli: TatC drives assembly whereas TatA is essential for stability.
    Mangels D; Mathers J; Bolhuis A; Robinson C
    J Mol Biol; 2005 Jan; 345(2):415-23. PubMed ID: 15571732
    [TBL] [Abstract][Full Text] [Related]  

  • 25. TatBC-independent TatA/Tat substrate interactions contribute to transport efficiency.
    Taubert J; Hou B; Risselada HJ; Mehner D; Lünsdorf H; Grubmüller H; Brüser T
    PLoS One; 2015; 10(3):e0119761. PubMed ID: 25774531
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Overexpression in Escherichia coli of the rnf genes from Rhodobacter capsulatus--characterization of two membrane-bound iron-sulfur proteins.
    Jouanneau Y; Jeong HS; Hugo N; Meyer C; Willison JC
    Eur J Biochem; 1998 Jan; 251(1-2):54-64. PubMed ID: 9492268
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The NprA nitroreductase required for 2,4-dinitrophenol reduction in Rhodobacter capsulatus is a dihydropteridine reductase.
    Pérez-Reinado E; Roldán MD; Castillo F; Moreno-Vivián C
    Environ Microbiol; 2008 Nov; 10(11):3174-83. PubMed ID: 18355323
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Twin-arginine-dependent translocation of SufI in the absence of cytosolic helper proteins.
    Holzapfel E; Moser M; Schiltz E; Ueda T; Betton JM; Müller M
    Biochemistry; 2009 Jun; 48(23):5096-105. PubMed ID: 19432418
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Structural organization of the twin-arginine translocation system in Streptomyces lividans.
    De Keersmaeker S; Van Mellaert L; Schaerlaekens K; Van Dessel W; Vrancken K; Lammertyn E; Anné J; Geukens N
    FEBS Lett; 2005 Jan; 579(3):797-802. PubMed ID: 15670849
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Sequence and phylogenetic analyses of the twin-arginine targeting (Tat) protein export system.
    Yen MR; Tseng YH; Nguyen EH; Wu LF; Saier MH
    Arch Microbiol; 2002 Jun; 177(6):441-50. PubMed ID: 12029389
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Molybdate-dependent expression of dimethylsulfoxide reductase in Rhodobacter capsulatus.
    Solomon PS; Shaw AL; Young MD; Leimkuhler S; Hanson GR; Klipp W; McEwan AG
    FEMS Microbiol Lett; 2000 Sep; 190(2):203-8. PubMed ID: 11034280
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Myxococcus xanthus twin-arginine translocation system is important for growth and development.
    Kimura Y; Saiga H; Hamanaka H; Matoba H
    Arch Microbiol; 2006 Feb; 184(6):387-96. PubMed ID: 16331440
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Unanticipated functional diversity among the TatA-type components of the Tat protein translocase.
    Eimer E; Kao WC; Fröbel J; Blümmel AS; Hunte C; Müller M
    Sci Rep; 2018 Jan; 8(1):1326. PubMed ID: 29358647
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Coexpression of TorD enhances the transport of GFP via the TAT pathway.
    Li SY; Chang BY; Lin SC
    J Biotechnol; 2006 Apr; 122(4):412-21. PubMed ID: 16253369
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Asymmetric reduction of racemic sulfoxides by dimethyl sulfoxide reductases from Rhodobacter capsulatus, Escherichia coli and Proteus species.
    Hanlon SP; Graham DL; Hogan PJ; Holt RA; Reeve CD; Shaw AL; McEwan AG
    Microbiology (Reading); 1998 Aug; 144 ( Pt 8)():2247-2253. PubMed ID: 9720047
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Impairment of twin-arginine-dependent export by seemingly small alterations of substrate conformation.
    Maurer C; Panahandeh S; Moser M; Müller M
    FEBS Lett; 2009 Sep; 583(17):2849-53. PubMed ID: 19631648
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Formation of functional Tat translocases from heterologous components.
    Hicks MG; Guymer D; Buchanan G; Widdick DA; Caldelari I; Berks BC; Palmer T
    BMC Microbiol; 2006 Jul; 6():64. PubMed ID: 16854235
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A minimal Tat system from a gram-positive organism: a bifunctional TatA subunit participates in discrete TatAC and TatA complexes.
    Barnett JP; Eijlander RT; Kuipers OP; Robinson C
    J Biol Chem; 2008 Feb; 283(5):2534-42. PubMed ID: 18029357
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Twin-arginine translocation system in Helicobacter pylori: TatC, but not TatB, is essential for viability.
    Benoit SL; Maier RJ
    mBio; 2014 Jan; 5(1):e01016-13. PubMed ID: 24449753
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Arsenite oxidase, an ancient bioenergetic enzyme.
    Lebrun E; Brugna M; Baymann F; Muller D; Lièvremont D; Lett MC; Nitschke W
    Mol Biol Evol; 2003 May; 20(5):686-93. PubMed ID: 12679550
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.