BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

216 related articles for article (PubMed ID: 16980712)

  • 1. Whole-genome microarray in Arabidopsis facilitates global analysis of retained introns.
    Ner-Gaon H; Fluhr R
    DNA Res; 2006 Jun; 13(3):111-21. PubMed ID: 16980712
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Intron retention is a major phenomenon in alternative splicing in Arabidopsis.
    Ner-Gaon H; Halachmi R; Savaldi-Goldstein S; Rubin E; Ophir R; Fluhr R
    Plant J; 2004 Sep; 39(6):877-85. PubMed ID: 15341630
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Alternative splicing and differential gene expression in colon cancer detected by a whole genome exon array.
    Gardina PJ; Clark TA; Shimada B; Staples MK; Yang Q; Veitch J; Schweitzer A; Awad T; Sugnet C; Dee S; Davies C; Williams A; Turpaz Y
    BMC Genomics; 2006 Dec; 7():325. PubMed ID: 17192196
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Alternative splicing of c-fos pre-mRNA: contribution of the rates of synthesis and degradation to the copy number of each transcript isoform and detection of a truncated c-Fos immunoreactive species.
    Jurado J; Fuentes-Almagro CA; Prieto-Alamo MJ; Pueyo C
    BMC Mol Biol; 2007 Sep; 8():83. PubMed ID: 17888145
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification of alternative splicing events regulated by an Arabidopsis serine/arginine-like protein, atSR45a, in response to high-light stress using a tiling array.
    Yoshimura K; Mori T; Yokoyama K; Koike Y; Tanabe N; Sato N; Takahashi H; Maruta T; Shigeoka S
    Plant Cell Physiol; 2011 Oct; 52(10):1786-805. PubMed ID: 21862516
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The pentatricopeptide repeat gene OTP51 with two LAGLIDADG motifs is required for the cis-splicing of plastid ycf3 intron 2 in Arabidopsis thaliana.
    de Longevialle AF; Hendrickson L; Taylor NL; Delannoy E; Lurin C; Badger M; Millar AH; Small I
    Plant J; 2008 Oct; 56(1):157-68. PubMed ID: 18557832
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Genome-wide detection and analysis of alternative splicing for nucleotide binding site-leucine-rich repeats sequences in rice.
    Gu L; Guo R
    J Genet Genomics; 2007 Mar; 34(3):247-57. PubMed ID: 17498622
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Intron retention as an alternative splice variant of the rat urocortin 1 gene.
    Blanco E; Rojas R; Haeger P; Cuevas R; Perez C; Munita R; Quiroz G; Andrés ME; Forray MI; Gysling K
    Neuroscience; 2006 Jul; 140(4):1245-52. PubMed ID: 16650605
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Genome-wide analysis of transcript isoform variation in humans.
    Kwan T; Benovoy D; Dias C; Gurd S; Provencher C; Beaulieu P; Hudson TJ; Sladek R; Majewski J
    Nat Genet; 2008 Feb; 40(2):225-31. PubMed ID: 18193047
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The plant exon finder: a tool for precise detection of exons using a T-DNA-based tagging approach.
    Jingu F; Shirase T; Ohtomo I; Imai A; Komeda Y; Takahashi T
    Gene; 2004 Sep; 338(2):267-73. PubMed ID: 15315830
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Exons - introns = lexons: in-frame concatenation of exons by PCR.
    Tuohy TM; Groden J
    Hum Mutat; 1998; 12(2):122-7. PubMed ID: 9671273
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An intron with a constitutive transport element is retained in a Tap messenger RNA.
    Li Y; Bor YC; Misawa Y; Xue Y; Rekosh D; Hammarskjöld ML
    Nature; 2006 Sep; 443(7108):234-7. PubMed ID: 16971948
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Genome-wide analyses of alternative splicing in plants: opportunities and challenges.
    Barbazuk WB; Fu Y; McGinnis KM
    Genome Res; 2008 Sep; 18(9):1381-92. PubMed ID: 18669480
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Detection of exon skipping and retained introns in transcription of the human thrombospondin 2 gene.
    Adolph KW
    Biochem Biophys Res Commun; 1999 Jun; 259(3):527-32. PubMed ID: 10364452
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bioinformatics detection of alternative splicing.
    Kim N; Lee C
    Methods Mol Biol; 2008; 452():179-97. PubMed ID: 18566765
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Natural genetic variation in whole-genome expression in Arabidopsis thaliana: the impact of physiological QTL introgression.
    Juenger TE; Wayne T; Boles S; Symonds VV; McKay J; Coughlan SJ
    Mol Ecol; 2006 Apr; 15(5):1351-65. PubMed ID: 16626458
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Different levels of alternative splicing among eukaryotes.
    Kim E; Magen A; Ast G
    Nucleic Acids Res; 2007; 35(1):125-31. PubMed ID: 17158149
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Genome-wide transcriptome profiling of the early cadmium response of Arabidopsis roots and shoots.
    Herbette S; Taconnat L; Hugouvieux V; Piette L; Magniette ML; Cuine S; Auroy P; Richaud P; Forestier C; Bourguignon J; Renou JP; Vavasseur A; Leonhardt N
    Biochimie; 2006 Nov; 88(11):1751-65. PubMed ID: 16797112
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Support vector machines-based identification of alternative splicing in Arabidopsis thaliana from whole-genome tiling arrays.
    Eichner J; Zeller G; Laubinger S; Rätsch G
    BMC Bioinformatics; 2011 Feb; 12():55. PubMed ID: 21324185
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Alternative splicing at NAGNAG acceptor sites shares common properties in land plants and mammals.
    Iida K; Shionyu M; Suso Y
    Mol Biol Evol; 2008 Apr; 25(4):709-18. PubMed ID: 18234709
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.