BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

468 related articles for article (PubMed ID: 16980961)

  • 1. An oxidation-sensing mechanism is used by the global regulator MgrA in Staphylococcus aureus.
    Chen PR; Bae T; Williams WA; Duguid EM; Rice PA; Schneewind O; He C
    Nat Chem Biol; 2006 Nov; 2(11):591-5. PubMed ID: 16980961
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Redox sensing and histidine oxidation: no longer PerR-fect strangers.
    Moye-Rowley WS
    Nat Chem Biol; 2006 May; 2(5):234-5. PubMed ID: 16619021
    [No Abstract]   [Full Text] [Related]  

  • 3. Structural mechanism of organic hydroperoxide induction of the transcription regulator OhrR.
    Newberry KJ; Fuangthong M; Panmanee W; Mongkolsuk S; Brennan RG
    Mol Cell; 2007 Nov; 28(4):652-64. PubMed ID: 18042459
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mutational analysis of active site residues essential for sensing of organic hydroperoxides by Bacillus subtilis OhrR.
    Soonsanga S; Fuangthong M; Helmann JD
    J Bacteriol; 2007 Oct; 189(19):7069-76. PubMed ID: 17660290
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The PerR transcription factor senses H2O2 by metal-catalysed histidine oxidation.
    Lee JW; Helmann JD
    Nature; 2006 Mar; 440(7082):363-7. PubMed ID: 16541078
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Lysine N(zeta)-decarboxylation in the BlaR1 protein from Staphylococcus aureus at the root of its function as an antibiotic sensor.
    Cha J; Mobashery S
    J Am Chem Soc; 2007 Apr; 129(13):3834-5. PubMed ID: 17343387
    [No Abstract]   [Full Text] [Related]  

  • 7. CymR, the master regulator of cysteine metabolism in Staphylococcus aureus, controls host sulphur source utilization and plays a role in biofilm formation.
    Soutourina O; Poupel O; Coppée JY; Danchin A; Msadek T; Martin-Verstraete I
    Mol Microbiol; 2009 Jul; 73(2):194-211. PubMed ID: 19508281
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Novel organic hydroperoxide-sensing and responding mechanisms for OhrR, a major bacterial sensor and regulator of organic hydroperoxide stress.
    Panmanee W; Vattanaviboon P; Poole LB; Mongkolsuk S
    J Bacteriol; 2006 Feb; 188(4):1389-95. PubMed ID: 16452421
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Conformational and thermodynamic changes of the repressor/DNA operator complex upon monomerization shed new light on regulation mechanisms of bacterial resistance against beta-lactam antibiotics.
    Boudet J; Duval V; Van Melckebeke H; Blackledge M; Amoroso A; Joris B; Simorre JP
    Nucleic Acids Res; 2007; 35(13):4384-95. PubMed ID: 17576674
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Kinetics of metal binding by the toxic metal-sensing transcriptional repressor Staphylococcus aureus pI258 CadC.
    Busenlehner LS; Giedroc DP
    J Inorg Biochem; 2006 May; 100(5-6):1024-34. PubMed ID: 16487591
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Regulation of DNA-binding activity of the Staphylococcus aureus catabolite control protein A by copper (II)-mediated oxidation.
    Liao X; Li H; Guo Y; Yang F; Chen Y; He X; Li H; Xia W; Mao ZW; Sun H
    J Biol Chem; 2022 Mar; 298(3):101587. PubMed ID: 35032550
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phosphorylation-induced activation of the response regulator VraR from Staphylococcus aureus: insights from hydrogen exchange mass spectrometry.
    Liu YH; Belcheva A; Konermann L; Golemi-Kotra D
    J Mol Biol; 2009 Aug; 391(1):149-63. PubMed ID: 19520087
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biochemical characterization of the multidrug regulator QacR distinguishes residues that are crucial to multidrug binding and induction of qacA transcription.
    Peters KM; Sharbeen G; Theis T; Skurray RA; Brown MH
    Biochemistry; 2009 Oct; 48(41):9794-800. PubMed ID: 19761200
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The SrrAB two-component system regulates
    Tiwari N; López-Redondo M; Miguel-Romero L; Kulhankova K; Cahill MP; Tran PM; Kinney KJ; Kilgore SH; Al-Tameemi H; Herfst CA; Tuffs SW; Kirby JR; Boyd JM; McCormick JK; Salgado-Pabón W; Marina A; Schlievert PM; Fuentes EJ
    Proc Natl Acad Sci U S A; 2020 May; 117(20):10989-10999. PubMed ID: 32354997
    [No Abstract]   [Full Text] [Related]  

  • 15. A novel class of cysteine protease inhibitors: solution structure of staphostatin A from Staphylococcus aureus.
    Dubin G; Krajewski M; Popowicz G; Stec-Niemczyk J; Bochtler M; Potempa J; Dubin A; Holak TA
    Biochemistry; 2003 Nov; 42(46):13449-56. PubMed ID: 14621990
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A new oxidative sensing and regulation pathway mediated by the MgrA homologue SarZ in Staphylococcus aureus.
    Chen PR; Nishida S; Poor CB; Cheng A; Bae T; Kuechenmeister L; Dunman PM; Missiakas D; He C
    Mol Microbiol; 2009 Jan; 71(1):198-211. PubMed ID: 19007410
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Iron acquisition by the haem-binding Isd proteins in Staphylococcus aureus: studies of the mechanism using magnetic circular dichroism.
    Tiedemann MT; Muryoi N; Heinrichs DE; Stillman MJ
    Biochem Soc Trans; 2008 Dec; 36(Pt 6):1138-43. PubMed ID: 19021512
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structural and functional insight into the different oxidation states of SAV1875 from Staphylococcus aureus.
    Kim HJ; Kwon AR; Lee BJ
    Biochem J; 2016 Jan; 473(1):55-66. PubMed ID: 26487697
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structure of Rot, a global regulator of virulence genes in Staphylococcus aureus.
    Zhu Y; Fan X; Zhang X; Jiang X; Niu L; Teng M; Li X
    Acta Crystallogr D Biol Crystallogr; 2014 Sep; 70(Pt 9):2467-76. PubMed ID: 25195759
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transcription Profiling of the mgrA Regulon in Staphylococcus aureus.
    Luong TT; Dunman PM; Murphy E; Projan SJ; Lee CY
    J Bacteriol; 2006 Mar; 188(5):1899-910. PubMed ID: 16484201
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 24.