BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

294 related articles for article (PubMed ID: 16981704)

  • 1. The transferable tail: fusion of the N-terminal acidic extension of heparin cofactor II to alpha1-proteinase inhibitor M358R specifically increases the rate of thrombin inhibition.
    Sutherland JS; Bhakta V; Filion ML; Sheffield WP
    Biochemistry; 2006 Sep; 45(38):11444-52. PubMed ID: 16981704
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Full or partial substitution of the reactive center loop of alpha-1-proteinase inhibitor by that of heparin cofactor II: P1 Arg is required for maximal thrombin inhibition.
    Filion ML; Bhakta V; Nguyen LH; Liaw PS; Sheffield WP
    Biochemistry; 2004 Nov; 43(46):14864-72. PubMed ID: 15544357
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The appended tail region of heparin cofactor II and additional reactive centre loop mutations combine to increase the reactivity and specificity of alpha1-proteinase inhibitor M358R for thrombin.
    Sutherland JS; Bhakta V; Sheffield WP
    Thromb Haemost; 2007 Nov; 98(5):1014-23. PubMed ID: 18000606
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reduction of thrombus size in murine models of thrombosis following administration of recombinant α1-proteinase inhibitor mutant proteins.
    Sheffield WP; Eltringham-Smith LJ; Bhakta V; Gataiance S
    Thromb Haemost; 2012 May; 107(5):972-84. PubMed ID: 22370677
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fusion of the C-terminal triskaidecapeptide of hirudin variant 3 to alpha1-proteinase inhibitor M358R increases the serpin-mediated rate of thrombin inhibition.
    Roddick LA; Bhakta V; Sheffield WP
    BMC Biochem; 2013 Nov; 14():31. PubMed ID: 24215622
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Investigating serpin-enzyme complex formation and stability via single and multiple residue reactive centre loop substitutions in heparin cofactor II.
    Sutherland JS; Bhakta V; Sheffield WP
    Thromb Res; 2006; 117(4):447-61. PubMed ID: 15869786
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Altering heparin cofactor II at VAL439 (P6) either impairs inhibition of thrombin or confers elastase resistance.
    Cunningham MA; Bhakta V; Sheffield WP
    Thromb Haemost; 2002 Jul; 88(1):89-97. PubMed ID: 12152684
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The complete N-terminal extension of heparin cofactor II is required for maximal effectiveness as a thrombin exosite 1 ligand.
    Boyle AJ; Roddick LA; Bhakta V; Lambourne MD; Junop MS; Liaw PC; Weitz JI; Sheffield WP
    BMC Biochem; 2013 Mar; 14():6. PubMed ID: 23496873
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The N-terminal acidic domain of heparin cofactor II mediates the inhibition of alpha-thrombin in the presence of glycosaminoglycans.
    Van Deerlin VM; Tollefsen DM
    J Biol Chem; 1991 Oct; 266(30):20223-31. PubMed ID: 1939083
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Arginine 200 of heparin cofactor II promotes intramolecular interactions of the acidic domain. Implication for thrombin inhibition.
    Ciaccia AV; Monroe DM; Church FC
    J Biol Chem; 1997 May; 272(22):14074-9. PubMed ID: 9162031
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The M358R variant of α(1)-proteinase inhibitor inhibits coagulation factor VIIa.
    Sheffield WP; Bhakta V
    Biochem Biophys Res Commun; 2016 Feb; 470(3):710-713. PubMed ID: 26797521
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ligand binding to thrombin exosite II induces dissociation of the thrombin-heparin cofactor II(L444R) complex.
    Han JH; Tollefsen DM
    Biochemistry; 1998 Mar; 37(9):3203-9. PubMed ID: 9485475
    [TBL] [Abstract][Full Text] [Related]  

  • 13. RNA aptamer to thrombin binds anion-binding exosite-2 and alters protease inhibition by heparin-binding serpins.
    Jeter ML; Ly LV; Fortenberry YM; Whinna HC; White RR; Rusconi CP; Sullenger BA; Church FC
    FEBS Lett; 2004 Jun; 568(1-3):10-4. PubMed ID: 15196911
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanism of thrombin inhibition by heparin cofactor II and antithrombin in the presence of the ray (Raja radula) skin dermatan sulfate.
    Ben Mansour M; Dhahri M; Vénisse L; Jandrot-Perrus M; Chaubet F; Maaroufi RM
    Thromb Res; 2009 Apr; 123(6):902-8. PubMed ID: 19046760
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Aspartic acid residues 72 and 75 and tyrosine-sulfate 73 of heparin cofactor II promote intramolecular interactions during glycosaminoglycan binding and thrombin inhibition.
    Mitchell JW; Church FC
    J Biol Chem; 2002 May; 277(22):19823-30. PubMed ID: 11856753
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular mapping of the thrombin-heparin cofactor II complex.
    Fortenberry YM; Whinna HC; Gentry HR; Myles T; Leung LL; Church FC
    J Biol Chem; 2004 Oct; 279(41):43237-44. PubMed ID: 15292227
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Heparin cofactor II modulates the response to vascular injury.
    Tollefsen DM
    Arterioscler Thromb Vasc Biol; 2007 Mar; 27(3):454-60. PubMed ID: 17194895
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanism of activation of heparin cofactor II by calcium spirulan.
    Hayakawa Y; Hirashima Y; Yamamoto H; Kurimoto M; Hayashi T; Lee JB; Endo S
    Arch Biochem Biophys; 2003 Aug; 416(1):47-52. PubMed ID: 12859981
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparison of heparin- and dermatan sulfate-mediated catalysis of thrombin inactivation by heparin cofactor II.
    Liaw PC; Austin RC; Fredenburgh JC; Stafford AR; Weitz JI
    J Biol Chem; 1999 Sep; 274(39):27597-604. PubMed ID: 10488098
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Activation of heparin cofactor II by calcium spirulan.
    Hayakawa Y; Hayashi T; Lee JB; Ozawa T; Sakuragawa N
    J Biol Chem; 2000 Apr; 275(15):11379-82. PubMed ID: 10753952
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.